On a~generalization of Hardy--Hilbert's integral inequality
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 91-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of Hardy–Hilbert's integral inequality was given by B. Yang in [18]. The main purpose of the present article is to generalize the inequality. As applications, the reverse, the equivalent form of the inequality, some particular results and the generalization of Hardy–Littlewood inequalities are derived.
@article{BASM_2009_2_a6,
     author = {Namita Das and Srinibas Sahoo},
     title = {On a~generalization of {Hardy--Hilbert's} integral inequality},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {91--110},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a6/}
}
TY  - JOUR
AU  - Namita Das
AU  - Srinibas Sahoo
TI  - On a~generalization of Hardy--Hilbert's integral inequality
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 91
EP  - 110
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a6/
LA  - en
ID  - BASM_2009_2_a6
ER  - 
%0 Journal Article
%A Namita Das
%A Srinibas Sahoo
%T On a~generalization of Hardy--Hilbert's integral inequality
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 91-110
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a6/
%G en
%F BASM_2009_2_a6
Namita Das; Srinibas Sahoo. On a~generalization of Hardy--Hilbert's integral inequality. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 91-110. https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a6/

[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, Cambrige, 1952 | MR | Zbl

[2] Kuang J., Applied Inequalities, Shangdong Science and Technology Press, Jinan, 2004

[3] Wang Z., Guo D., An Introduction to Special Functions, Science Press, Beijing, 1979

[4] Kuang J., “On new extensions of Hilbert's Inequalities”, J. Math. Anal. Appl., 235:2 (1999), 608–614 | DOI | MR | Zbl

[5] Hong Y., “All-sided Generalization about Hardy–Hilbert's integral inequalities”, Acta Math. Sinica (China), 44 (2001), 619–626 | MR | Zbl

[6] Hong Y., “On Hardy–Hilbert's integral inequalities with some parameters”, J. Ineq. Pure and Appl. Math., 6:4 (2005), Art-92 | MR

[7] Yang B., “On generalization of Hardy–Hilbert's integral inequalities”, Acta Math. Sinica (China), 41:4 (1998), 839–844 | MR | Zbl

[8] Yang B., Debnath L., “On a new generalization of Hilbert's integral inequality and it's application”, RGMIA Research Report Collection, 2:5 (1999), Article 13 | MR

[9] Yang B., “On new generalizations of Hilbert's inequality”, J. Math. Anal. Appl., 248 (2000), 29–40 | DOI | MR | Zbl

[10] Yang B., “On a general Hardy–Hilbert's integral inequality with a best value”, Chin. Ann. of Math., 21A (2000), 401–408 | MR | Zbl

[11] Yang B., “On Hardy–Hilbert's integral inequality”, J. Math. Anal. Appl., 261 (2001), 295–306 | DOI | MR | Zbl

[12] Yang B., “On an extension of Hardy–Hilbert's inequality”, RGMIA Research Report Collection, 4:3 (2001), Article 7 | MR

[13] Yang B., “On Generalization of the Hardy–Hilbert's integral inequality”, RGMIA Research Report Collection, 4:4 (2001), Article 1

[14] Yang B., “On a generalization of Hardy–Hilbert's inequality”, Ann. of Math. (China), 23 (2002), 247–254 | Zbl

[15] Yang B., Debnath L., “On the extended Hardy–Hilbert's inequality”, J. Math. Anal. Appl., 272 (2002), 187–199 | DOI | MR | Zbl

[16] Yang B., “On a new inequality similar to Hardy–Hilbert's inequality”, Math. Ineq. and Appl., 6:1 (2003), 37–44 | MR | Zbl

[17] Yang B., “On the extended Hilbert's integral inequality”, J. Ineq. Pure and Appl. Math., 5:4 (2004), Art-96 | MR

[18] Yang B., “A relation to Hardy–Hilbert's integral inequality and Mulholland's inequality”, J. Ineq. Pure and Appl. Math., 6:4 (2005), Art-112 | MR

[19] Jia W., Gao M., “An extended Hardy–Hilbert's inequality and it's applications”, J. Ineq. Pure and Appl. Math., 7:1 (2006), Art-30 | MR

[20] Gao M., “On Hilbert's Inequality and Its Applications”, J. Math. Anal. Appl., 212 (1997), 316–323 | DOI | MR | Zbl

[21] Gao M., Tan Li, Debnath L., “Some Improvements on Hilbert's Integral Inequality”, J. Math. Anal. Appl., 229 (1999), 682–689 | DOI | MR | Zbl

[22] Zhou Yu, Gao M., “An Extension on the Hardy–Hilbert's Integral Inequality and its Application”, J. Math. Ineq., 1:2 (2007), 149–158 | MR | Zbl

[23] Azar L. E., “On an Extension of Hardy–Hilbert's Integral Inequality with Three Parameters”, Int. Math. Forum, 2:48 (2007), 2369–2378 | MR | Zbl

[24] Peachey T. C., “Some integral inequalities related to Hilbert's”, J. Ineq. Pure and Appl. Math., 4:1 (2003), Art-19 | MR

[25] Brnetic I., Pecaric J., “Generalization of Hilbert's integral inequality”, Math. Ineq. and Appl., 7:2 (2004), 199–205 | MR | Zbl

[26] Brnetic I., Pecaric J., “Generalization of inequalities of Hardy–Hilbert type”, Math. Ineq. and Appl., 7:2 (2004), 217–225 | MR | Zbl

[27] Mario K., Gao M., Pecaric J., Gao X., “On the Best Constant in Hilbert's inequality”, Math. Ineq. and Appl., 8:2 (2005), 317–29 | MR