Dynamic programming algorithms for solving stochastic discrete control problems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 73-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stochastic versions of classical discrete optimal control problems are formulated and studied. Approaches for solving the stochastic versions of optimal control problems based on concept of Markov processes and dynamic programming are suggested. Algorithms for solving the problems on stochastic networks using such approaches and time-expended network method are proposed.
@article{BASM_2009_2_a5,
     author = {Dmitrii Lozovanu and Stefan Pickl},
     title = {Dynamic programming algorithms for solving stochastic discrete control problems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {73--90},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a5/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
AU  - Stefan Pickl
TI  - Dynamic programming algorithms for solving stochastic discrete control problems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 73
EP  - 90
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a5/
LA  - en
ID  - BASM_2009_2_a5
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%A Stefan Pickl
%T Dynamic programming algorithms for solving stochastic discrete control problems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 73-90
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a5/
%G en
%F BASM_2009_2_a5
Dmitrii Lozovanu; Stefan Pickl. Dynamic programming algorithms for solving stochastic discrete control problems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 73-90. https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a5/

[1] Bellman R., Kalaba R., Dynamic programming and modern control theory, Academic Press, New York–London, 1965 | MR

[2] Boltjanski W. G., Optimale Steuerung diskreter Systeme, Leipzig Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig, 1976 | MR | Zbl

[3] Feller W., An Introduction to Probability Theory and its Applications, Vol. 1, 2nd edition, John Wiley, New York, 1957 | MR | Zbl

[4] Howard R. A., Dynamic Programming and Markov Processes, Wiley, 1960 | MR | Zbl

[5] Lozovanu D., Pickl S., Optimization and Multiobjective Control of Time-Discrete Systems, Springer, 2008 | MR | Zbl

[6] Lozovanu D., Pickl S., “Allgorithms and the calculation of Nash equilibria for multi-objective control of time-discrete systems and polynomial-time algorithms for dynamic $c$-games on networks”, European Journal of Operational Research, 181 (2007), 1214–1232 | DOI | MR | Zbl