A complete classification of quadratic differential systems according to the dimensions of Aff(2,R)-orbits
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 29-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the action of the group Aff(2,R) of affine transformations and time rescaling on real planar quadratic differential systems. Via affine invariant conditions we give a complete stratification of this family of systems according to the dimension D of affine orbits proving that 3D6. Moreover we give a complete topological classification of all the systems located on the orbits of dimension D5 constructing the affine invariant criteria for the realization of each of 49 possible topologically distinct phase portraits.
@article{BASM_2009_2_a2,
     author = {N. Gherstega and V. Orlov and N. Vulpe},
     title = {A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--54},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/}
}
TY  - JOUR
AU  - N. Gherstega
AU  - V. Orlov
AU  - N. Vulpe
TI  - A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 29
EP  - 54
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/
LA  - en
ID  - BASM_2009_2_a2
ER  - 
%0 Journal Article
%A N. Gherstega
%A V. Orlov
%A N. Vulpe
%T A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 29-54
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/
%G en
%F BASM_2009_2_a2
N. Gherstega; V. Orlov; N. Vulpe. A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 29-54. https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/

[1] Popa M. N., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl

[2] Sibirsky K. S., Introduction to algebraic theory of invariants of differential equations, Stiinta, Chisinau, 1982 (in Russian); 1988 (in English) | Zbl

[3] Olver P. J., Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR

[4] Boularas D., Calin Iu., Timochouk L., Vulpe N., T-comitants of quadratic systems: a study via the translation invariants, Report 96-90, Delft University of Technology, Delft, 1996

[5] Schlomiuk D., Vulpe N., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl

[6] Boularas D., “Computation of affine covariants of quadratic bivariate differential systems”, J. Complexity, 16:4 (2000), 691–715 | DOI | MR | Zbl

[7] Gherstega N., Orlov V., “Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2(57), 122–126 | MR | Zbl

[8] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qualitative Theory of Dynamical Systems, 5 (2004), 135–194 | DOI | MR | Zbl

[9] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl

[10] Schlomiuk D., Vulpe N., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20 (2008), 737–775 | DOI | MR | Zbl

[11] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic systems with invariant lines of total multiplicity four”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1(56), 27–83 | MR | Zbl

[12] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain J. Math., 38 (2008), 2015–2076 | DOI | MR

[13] Baltag V. A., Vulpe N. I., “Total multiplicity of all finite critical points of the polynomial differential system”, Planar nonlinear dynamical systems (Delft, 1995), Differential Equations Dynam. Systems, 5:3–4 (1997), 455–471 | MR | Zbl