Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2009_2_a2, author = {N. Gherstega and V. Orlov and N. Vulpe}, title = {A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {29--54}, publisher = {mathdoc}, number = {2}, year = {2009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/} }
TY - JOUR AU - N. Gherstega AU - V. Orlov AU - N. Vulpe TI - A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 29 EP - 54 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/ LA - en ID - BASM_2009_2_a2 ER -
%0 Journal Article %A N. Gherstega %A V. Orlov %A N. Vulpe %T A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2009 %P 29-54 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/ %G en %F BASM_2009_2_a2
N. Gherstega; V. Orlov; N. Vulpe. A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 29-54. https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a2/
[1] Popa M. N., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl
[2] Sibirsky K. S., Introduction to algebraic theory of invariants of differential equations, Stiinta, Chisinau, 1982 (in Russian); 1988 (in English) | Zbl
[3] Olver P. J., Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR
[4] Boularas D., Calin Iu., Timochouk L., Vulpe N., T-comitants of quadratic systems: a study via the translation invariants, Report 96-90, Delft University of Technology, Delft, 1996
[5] Schlomiuk D., Vulpe N., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl
[6] Boularas D., “Computation of affine covariants of quadratic bivariate differential systems”, J. Complexity, 16:4 (2000), 691–715 | DOI | MR | Zbl
[7] Gherstega N., Orlov V., “Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2(57), 122–126 | MR | Zbl
[8] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qualitative Theory of Dynamical Systems, 5 (2004), 135–194 | DOI | MR | Zbl
[9] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl
[10] Schlomiuk D., Vulpe N., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20 (2008), 737–775 | DOI | MR | Zbl
[11] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic systems with invariant lines of total multiplicity four”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1(56), 27–83 | MR | Zbl
[12] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain J. Math., 38 (2008), 2015–2076 | DOI | MR
[13] Baltag V. A., Vulpe N. I., “Total multiplicity of all finite critical points of the polynomial differential system”, Planar nonlinear dynamical systems (Delft, 1995), Differential Equations Dynam. Systems, 5:3–4 (1997), 455–471 | MR | Zbl