On topological groupoids and multiple identities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies some properties of (n,m)-homogeneous isotopies of medial topological groupoids. It also examines the relationship between paramediality and associativity. We extended some affirmations of the theory of topological groups on the class of topological (n,m)-homogeneous primitive goupoids with divisions.
@article{BASM_2009_1_a6,
     author = {Liubomir Chiriac and Liubomir Chiriac Jr. and Natalia Bobeica},
     title = {On topological groupoids and multiple identities},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--78},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a6/}
}
TY  - JOUR
AU  - Liubomir Chiriac
AU  - Liubomir Chiriac Jr.
AU  - Natalia Bobeica
TI  - On topological groupoids and multiple identities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 67
EP  - 78
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a6/
LA  - en
ID  - BASM_2009_1_a6
ER  - 
%0 Journal Article
%A Liubomir Chiriac
%A Liubomir Chiriac Jr.
%A Natalia Bobeica
%T On topological groupoids and multiple identities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 67-78
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a6/
%G en
%F BASM_2009_1_a6
Liubomir Chiriac; Liubomir Chiriac Jr.; Natalia Bobeica. On topological groupoids and multiple identities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 67-78. https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a6/

[1] Belousov V. D., Foundation of the theory of quasigroups and loops, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[2] Choban M. M., Kiriyak L. L., “The topological quasigroups with multiple identities”, Quasigroups and Related Systems, 9 (2002), 19–31 | MR | Zbl

[3] Engelking R., General topology, Polish Scientific Publishers, Warszawa, 1977 | MR | Zbl

[4] Hewitt E., Ross K. A., Abstract harmonic analysis. Vol. 1: Structure of topological groups. Integration theory. Group representation, Berlin, 1963 | MR

[5] Kyriyak L. L., Choban M. M., “About homogeneous isotopies and congruences”, Învaţamîntul universitar din Moldova la 70 ani, Vol. 3, Chişinău, 2000, 33

[6] Choban M. M., Kiriyak L. L., “The Medial Topological Quasigroup with Multiple identities”, The 4th Conference on Applied and Industrial Mathematics, CAIM, 1996 (Oradea)

[7] Chiriac L. L., “On Topological Quasigroups and Homogeneous Isotopies”, Analele Universităţii din Piteşti, Buletin Ştiinţific, Seria Matematică şi informatica, 2003, no. 9, 191–196

[8] Chiriac L. L., Bobeica N., “Some properties of the homogeneous isotopies”, Acta et Commentationes, Vol. III, Universitatea de Stat Tiraspol, Chişinău, 2006, 107–112

[9] Chiriac L. L., “On some generalization of commutativity in topological groupoids”, 6th Congress of Romanian Mathematicians (June 28 – July 4, 2007, Bucharest, Romania), 45

[10] Chiriac L. L., Bobeica N., “Paramedial topological groupoids”, 6th Congress of Romanian Mathematicians (June 28 – July 4, 2007, Bucharest, Romania), 25–26

[11] Chiriac L. L., “On topological primitive groupoid with divisions”, Acta et Commentationes, Vol. III, Universitatea de Stat Tiraspol, Chişinău, 2003, 175–178

[12] Kermit Sigmon, “Medial topological groupoids”, Aeq. Math., 1 (1968), 217–234 | DOI | MR