Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2009_1_a4, author = {D. Cheban and C. Mammana and E. Michetti}, title = {Global attractors of non-autonomous difference equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {45--57}, publisher = {mathdoc}, number = {1}, year = {2009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/} }
TY - JOUR AU - D. Cheban AU - C. Mammana AU - E. Michetti TI - Global attractors of non-autonomous difference equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 45 EP - 57 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/ LA - en ID - BASM_2009_1_a4 ER -
%0 Journal Article %A D. Cheban %A C. Mammana %A E. Michetti %T Global attractors of non-autonomous difference equations %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2009 %P 45-57 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/ %G en %F BASM_2009_1_a4
D. Cheban; C. Mammana; E. Michetti. Global attractors of non-autonomous difference equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 45-57. https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/
[1] Brianzoni S., Mammana C., Michetti E., “Complex dynamics in the neo-classical growth model with differential savings and non-constant labor force growth”, Studies in nonlinear dynamics and econometrics, 11:3 (2007), Article 3 ; http://www.bepress.com/snde/vol11/iss3/art3 | Zbl
[2] Beverton R. J. H., Holt S. J., “On the dynamics of exploited fish populations”, Fishery Investigations, 19 (1957), 1–533
[3] Bohm V., Kaas L., “Differential savings, factor shares, and endogenous growth cycles”, Journal of Economic Dynamics and Control, 24 (2000), 965–980 | DOI | MR | Zbl
[4] Cheban D. N., Global Attractors of Nonautonomous Dissipative Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific, River Edge, NJ, 2004 | MR | Zbl
[5] Cheban D. N., Mammana C., “Invariant Manifolds, Global Attractors and Almost Periodic Solutions of Non-autonomous Difference equations”, Nonlinear Analyses Ser. A, 56:4 (2004), 465–484 | DOI | MR | Zbl
[6] Cheban D. N., Mammana C., Michetti E., “Global Attractors of Quasi-Linear Non-Autonomous Difference Equations”, Bulletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2008, no. 1(56), 84–104 | MR | Zbl
[7] Cushing J. M., Henson S. M., “Global dynamics of some periodically forced, monotone difference equations”, Journal of Difference Equations and Applications, 7 (2001), 859–872 | DOI | MR | Zbl
[8] Cushing J. M., Henson S. M., “A periodically forced Beverton–Holt equation”, Journal of Difference Equations and Applications, 8(12) (2002), 119–1120 | DOI | MR
[9] Sell G. R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971 | MR | Zbl
[10] Solow R. M., “A contribution to the theory of economic growth”, Quarterly Journal of Economics, 70 (1956), 65–94 | DOI