Global attractors of non-autonomous difference equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of global attractors of quasi-linear non-autonomous difference equations. The results obtained are applied to the study of a triangular economic growth model T:R+2R+2 recently developed in S. Brianzoni, C. Mammana and E. Michetti [1].
@article{BASM_2009_1_a4,
     author = {D. Cheban and C. Mammana and E. Michetti},
     title = {Global attractors of non-autonomous difference equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {45--57},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/}
}
TY  - JOUR
AU  - D. Cheban
AU  - C. Mammana
AU  - E. Michetti
TI  - Global attractors of non-autonomous difference equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 45
EP  - 57
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/
LA  - en
ID  - BASM_2009_1_a4
ER  - 
%0 Journal Article
%A D. Cheban
%A C. Mammana
%A E. Michetti
%T Global attractors of non-autonomous difference equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 45-57
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/
%G en
%F BASM_2009_1_a4
D. Cheban; C. Mammana; E. Michetti. Global attractors of non-autonomous difference equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 45-57. https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a4/

[1] Brianzoni S., Mammana C., Michetti E., “Complex dynamics in the neo-classical growth model with differential savings and non-constant labor force growth”, Studies in nonlinear dynamics and econometrics, 11:3 (2007), Article 3 ; http://www.bepress.com/snde/vol11/iss3/art3 | Zbl

[2] Beverton R. J. H., Holt S. J., “On the dynamics of exploited fish populations”, Fishery Investigations, 19 (1957), 1–533

[3] Bohm V., Kaas L., “Differential savings, factor shares, and endogenous growth cycles”, Journal of Economic Dynamics and Control, 24 (2000), 965–980 | DOI | MR | Zbl

[4] Cheban D. N., Global Attractors of Nonautonomous Dissipative Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific, River Edge, NJ, 2004 | MR | Zbl

[5] Cheban D. N., Mammana C., “Invariant Manifolds, Global Attractors and Almost Periodic Solutions of Non-autonomous Difference equations”, Nonlinear Analyses Ser. A, 56:4 (2004), 465–484 | DOI | MR | Zbl

[6] Cheban D. N., Mammana C., Michetti E., “Global Attractors of Quasi-Linear Non-Autonomous Difference Equations”, Bulletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2008, no. 1(56), 84–104 | MR | Zbl

[7] Cushing J. M., Henson S. M., “Global dynamics of some periodically forced, monotone difference equations”, Journal of Difference Equations and Applications, 7 (2001), 859–872 | DOI | MR | Zbl

[8] Cushing J. M., Henson S. M., “A periodically forced Beverton–Holt equation”, Journal of Difference Equations and Applications, 8(12) (2002), 119–1120 | DOI | MR

[9] Sell G. R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971 | MR | Zbl

[10] Solow R. M., “A contribution to the theory of economic growth”, Quarterly Journal of Economics, 70 (1956), 65–94 | DOI