Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2009_1_a1, author = {G. Belyavskaya and A. Diordiev}, title = {Conjugate-orthogonality and the complete multiplication group of a~quasigroup}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {22--30}, publisher = {mathdoc}, number = {1}, year = {2009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/} }
TY - JOUR AU - G. Belyavskaya AU - A. Diordiev TI - Conjugate-orthogonality and the complete multiplication group of a~quasigroup JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 22 EP - 30 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/ LA - en ID - BASM_2009_1_a1 ER -
%0 Journal Article %A G. Belyavskaya %A A. Diordiev %T Conjugate-orthogonality and the complete multiplication group of a~quasigroup %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2009 %P 22-30 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/ %G en %F BASM_2009_1_a1
G. Belyavskaya; A. Diordiev. Conjugate-orthogonality and the complete multiplication group of a~quasigroup. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 22-30. https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/
[1] Belousov V. D., Foundations of the theory of quasigroups and loops, Nauka, Moscow, 1967 (in Russian) | MR | Zbl
[2] Belousov V. D., “Systems of orthogonal operations”, Mat. sbornik, 77(119):1 (1968), 38–58 (in Russian) | MR | Zbl
[3] Belousov V. D., “On the group associated with a quasigroup”, Mat. Issled., 4:3 (1969), 21–39 (in Russian) | MR | Zbl
[4] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups and related systems, 13:1 (2005), 25–72 | MR | Zbl
[5] Belyavskaya G. B., Diordiev A. D., “On some quasi-identities in finite quasigroups”, Buletinul Academiei de ştiinţe a Republicii Moldova, Matematica, 2005, no. 3(49), 19–32 | MR | Zbl
[6] Bennet F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Mathematics, 77 (1989), 29–50 | DOI | MR | Zbl
[7] Bennet F. E., “Latin squares with pairwise orthogonal conjugates”, Discrete Mathematics, 36 (1981), 117–137 | DOI | MR | Zbl
[8] Bennet F. E., “On conjugate orthogonal idempotent Latin squares”, Ars. Combinatorica, 19 (1985), 37–50 | MR
[9] Bennet F. E., Mendelsohn N. S., “Conjugate orthogonal Latin square graphs”, Congressus Numerantium, 23 (1979), 179–192 | MR | Zbl
[10] Bennet F. E., Hantao Zhang, “Latin squares with self-orthogonal conjugates”, Discrete Mathematics, 284 (2004), 45–55 | DOI | MR | Zbl
[11] Chaffer R. A., Lieberman D. J., Smith D. D., “The number of orthogonal conjugates of a quasigroup”, Proc. XIII Southeastern Conf. Combin., Graph Theory and Computing, Congressus Numerantium, 35 (1982), 169–180 | MR | Zbl
[12] Déneš J., Keedwell A. D., Latin squares and their applications, Académiai Kiado, Budapest; Academic Press, New York, 1974 | MR
[13] Evans T., “Algebraic structures associated with Latin squares and orthogonal arrays”, Proc. Conf. Algebraic Aspects of Combinatoris, Congressus Numerantium, 13 (1975), 31–52 | MR
[14] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Univ., 5 (1975), 191–196 | DOI | MR | Zbl
[15] Mullen G., Shcherbacov V., “On orthogonality of binary operations and squares”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2005, no. 2(48), 3–42 | MR
[16] Phelps K. T., “Conjugate orthogonal quasigroups”, J. Combin. Theory (A), 25 (1978), 117–127 | DOI | MR | Zbl