Conjugate-orthogonality and the complete multiplication group of a~quasigroup
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 22-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we establish connections between the orthogonality of conjugates of a finite or infinite quasigroup and some strictly transitive subsets of the complete multiplication group of this quasigroup. These connections are used for the investigation of orthogonality of distinct pairs of conjugates for quasigroups (loops) from some classes. For finite quasigroups the quasi-identities corresponding to orthogonality of pairs of conjugates are given.
@article{BASM_2009_1_a1,
     author = {G. Belyavskaya and A. Diordiev},
     title = {Conjugate-orthogonality and the complete multiplication group of a~quasigroup},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {22--30},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/}
}
TY  - JOUR
AU  - G. Belyavskaya
AU  - A. Diordiev
TI  - Conjugate-orthogonality and the complete multiplication group of a~quasigroup
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 22
EP  - 30
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/
LA  - en
ID  - BASM_2009_1_a1
ER  - 
%0 Journal Article
%A G. Belyavskaya
%A A. Diordiev
%T Conjugate-orthogonality and the complete multiplication group of a~quasigroup
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 22-30
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/
%G en
%F BASM_2009_1_a1
G. Belyavskaya; A. Diordiev. Conjugate-orthogonality and the complete multiplication group of a~quasigroup. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 22-30. https://geodesic-test.mathdoc.fr/item/BASM_2009_1_a1/

[1] Belousov V. D., Foundations of the theory of quasigroups and loops, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[2] Belousov V. D., “Systems of orthogonal operations”, Mat. sbornik, 77(119):1 (1968), 38–58 (in Russian) | MR | Zbl

[3] Belousov V. D., “On the group associated with a quasigroup”, Mat. Issled., 4:3 (1969), 21–39 (in Russian) | MR | Zbl

[4] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups and related systems, 13:1 (2005), 25–72 | MR | Zbl

[5] Belyavskaya G. B., Diordiev A. D., “On some quasi-identities in finite quasigroups”, Buletinul Academiei de ştiinţe a Republicii Moldova, Matematica, 2005, no. 3(49), 19–32 | MR | Zbl

[6] Bennet F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Mathematics, 77 (1989), 29–50 | DOI | MR | Zbl

[7] Bennet F. E., “Latin squares with pairwise orthogonal conjugates”, Discrete Mathematics, 36 (1981), 117–137 | DOI | MR | Zbl

[8] Bennet F. E., “On conjugate orthogonal idempotent Latin squares”, Ars. Combinatorica, 19 (1985), 37–50 | MR

[9] Bennet F. E., Mendelsohn N. S., “Conjugate orthogonal Latin square graphs”, Congressus Numerantium, 23 (1979), 179–192 | MR | Zbl

[10] Bennet F. E., Hantao Zhang, “Latin squares with self-orthogonal conjugates”, Discrete Mathematics, 284 (2004), 45–55 | DOI | MR | Zbl

[11] Chaffer R. A., Lieberman D. J., Smith D. D., “The number of orthogonal conjugates of a quasigroup”, Proc. XIII Southeastern Conf. Combin., Graph Theory and Computing, Congressus Numerantium, 35 (1982), 169–180 | MR | Zbl

[12] Déneš J., Keedwell A. D., Latin squares and their applications, Académiai Kiado, Budapest; Academic Press, New York, 1974 | MR

[13] Evans T., “Algebraic structures associated with Latin squares and orthogonal arrays”, Proc. Conf. Algebraic Aspects of Combinatoris, Congressus Numerantium, 13 (1975), 31–52 | MR

[14] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Univ., 5 (1975), 191–196 | DOI | MR | Zbl

[15] Mullen G., Shcherbacov V., “On orthogonality of binary operations and squares”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2005, no. 2(48), 3–42 | MR

[16] Phelps K. T., “Conjugate orthogonal quasigroups”, J. Combin. Theory (A), 25 (1978), 117–127 | DOI | MR | Zbl