About Division of d-Convex Simple Graphs in M-Prime Graphs
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we research the structure of d-convex simple graphs in order to extend the already known classes of graphs of this type. We do this using some new operations and new graphs. We introduce the notion of M-prime graphs and split all d-convex simple graphs into M-prime graphs using the M operation. After that we describe all M-prime graphs we know.
@article{BASM_2008_3_a9,
     author = {Nadejda Sur},
     title = {About {Division} of {d-Convex} {Simple} {Graphs} in {M-Prime} {Graphs}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {89--98},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a9/}
}
TY  - JOUR
AU  - Nadejda Sur
TI  - About Division of d-Convex Simple Graphs in M-Prime Graphs
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 89
EP  - 98
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a9/
LA  - en
ID  - BASM_2008_3_a9
ER  - 
%0 Journal Article
%A Nadejda Sur
%T About Division of d-Convex Simple Graphs in M-Prime Graphs
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 89-98
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a9/
%G en
%F BASM_2008_3_a9
Nadejda Sur. About Division of d-Convex Simple Graphs in M-Prime Graphs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 89-98. https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a9/

[1] Sur N., “Despre o clasă nouă de grafuri d-convex simple”, Analele Ştiinţifice ale USM, Seria “Ştiinţe fizico-matematice”, Chişinău, 2006, 123–126

[2] Sur N., “O operaţie algebrică în mulţimea grafurilor d-convex simple”, Conferinţa Ştiinţifică Internaţională dedicată jubileului de 60 ani ai USM (Chişinău, 2006), 55–56

[3] Sur N., “A method of description for d-convex simple and non-oriented graphs”, Annals of Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, 3 (2005), 35–38

[4] Sur N., Cataranciuc S., “Involving d-Convex Simple and Quasi-simple Planar Graphs in $\mathbb{R}^3$”, Computer Science Journal of Moldova, 13:2(38) (2005), 151–167 | MR | Zbl

[5] Kataranchuk S., O vypukloi prostote grafov, Dissertatsiya na soiskanie uchenoi stepeni fiz.-mat. nauk, Kishinev, 1990, 178 pp. | MR

[6] Soltan V., Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, “Shtiintsa”, Kishinev, 1984, 222 pp.