The sets of the classes M~p,k and their subsets
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 76-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the sets of the classes M~p,k having the Darboux property in the generalized metric spaces (E,l) are considered. Certain properties for these sets and their subsets in the generalized metric spaces (E,l) and in the Cartesian space have been given here.
@article{BASM_2008_3_a7,
     author = {Tadeusz Konik},
     title = {The sets of the classes $\widetilde M_{p,k}$ and their subsets},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {76--82},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a7/}
}
TY  - JOUR
AU  - Tadeusz Konik
TI  - The sets of the classes $\widetilde M_{p,k}$ and their subsets
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 76
EP  - 82
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a7/
LA  - en
ID  - BASM_2008_3_a7
ER  - 
%0 Journal Article
%A Tadeusz Konik
%T The sets of the classes $\widetilde M_{p,k}$ and their subsets
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 76-82
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a7/
%G en
%F BASM_2008_3_a7
Tadeusz Konik. The sets of the classes $\widetilde M_{p,k}$ and their subsets. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 76-82. https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a7/

[1] Cha̧dzyńska A., “On some classes of sets related to the symmetry of the tangency relation in a metric space”, Ann. Soc. Math. Polon., Comm. Math., 16 (1972), 219–228 | MR

[2] Goła̧b S., Moszner Z., “Sur le contact des courbes dans les espaces metriques généraux”, Colloq. Math., 10 (1963), 105–311 | MR

[3] Grochulski J., “Some properties of tangency relations”, Demonstratio Math., 28 (1995), 361–367 | MR | Zbl

[4] Grochulski J., Konik T., Tkacz M., “On the tangency of sets in metric spaces”, Ann. Polon. Math., 38 (1980), 121–131 | MR | Zbl

[5] Konik T., “On the reflexivity symmetry and transitivity of the tangency relations of sets of the class $\widetilde{M}_{p,k}$”, J. Geom., 52 (1995), 142–151 | DOI | MR | Zbl

[6] Konik T., “The compatibility of the tangency relations of sets in generalized metric spaces”, Mat. Vesnik, 50 (1998), 17–22 | MR | Zbl

[7] Konik T., “On the compatibility and the equivalence of the tangency relations of sets of the classes $A_{p,k}^*$”, J. Geom., 63 (1998), 124–133 | DOI | MR | Zbl

[8] Konik T., “On some tangency relation of sets”, Publ. Math. Debrecen, 55:3-4 (1999), 411–419 | MR | Zbl

[9] Konik T., “On the sets of the classes $\widetilde{M}_{p,k}$”, Demonstratio Math., 33:2 (2000), 407–417 | MR | Zbl

[10] Konik T., “O styczności zbiorów w uogólnionych przestrzeniach metrycznych”, Wydawnictwo Politechniki Czȩstochowskiej, Seria Monografie, 77 (2001), 1–71 | MR

[11] Konik T., “On some problem of the tangency of sets”, Bull. Acad. Sci. Rep. Moldova, Matematica, 2001, no. 1(35), 51–60 | MR | Zbl

[12] Waliszewski W., “On the tangency of sets in generalized metric spaces”, Ann. Polon. Math., 28 (1973), 275–284 | MR | Zbl