Hopf bifurcations analysis of a~three-dimensional nonlinear syste
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bifurcations analysis of a 3D nonlinear chaotic system, called the T system, is treated in this paper, extending the work presented in [5] and [6]. The system T belongs to a class of cvasi-metriplectic systems having the same Poisson tensor and the same Casimir.
@article{BASM_2008_3_a5,
     author = {Mircea Craioveanu and G. Tigan},
     title = {Hopf bifurcations analysis of a~three-dimensional nonlinear syste},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {57--66},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a5/}
}
TY  - JOUR
AU  - Mircea Craioveanu
AU  - G. Tigan
TI  - Hopf bifurcations analysis of a~three-dimensional nonlinear syste
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 57
EP  - 66
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a5/
LA  - en
ID  - BASM_2008_3_a5
ER  - 
%0 Journal Article
%A Mircea Craioveanu
%A G. Tigan
%T Hopf bifurcations analysis of a~three-dimensional nonlinear syste
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 57-66
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a5/
%G en
%F BASM_2008_3_a5
Mircea Craioveanu; G. Tigan. Hopf bifurcations analysis of a~three-dimensional nonlinear syste. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 57-66. https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a5/

[1] Alvarez G., Li S., Montoya F., Pastor G., Romera M., “Breaking projective chaos synchronization secure communication using filtering and generalized synchronization”, Chaos, Solitons and Fractals, 24 (2005), 775–783 | DOI | Zbl

[2] Chang Y., Chen G., “Complex dynamics in Chen's system”, Chaos, Solitons and Fractals, 27 (2006), 75–86 | DOI | MR | Zbl

[3] Lü J., Chen G., “A new chaotic attractor coined”, Int. J. of Bif. and Chaos, 12:3 (2002), 659–661 | DOI | MR | Zbl

[4] Sprott J.C., “Some simple chaotic flows”, Physical Review E, 50:2 (1994), R647–R650 | DOI | MR

[5] Tigan G., “Analysis of a dynamical system derived from the Lorenz system”, Scientific Bulletin of the Politehnica University of Timisoara, Tomul, 50:64, Fascicola 1 (2005), 61–72 | MR | Zbl

[6] Tigan G., “Bifurcation and the stability in a system derived from the Lorenz system”, Proceedings of “The 3-rd International Colloquium, Mathematics in Engineering and Numerical Physics”, 2004, 265–272

[7] Tigan G., “On a three-dimensional differential system”, Matematicki Bilten, 30 (LVI) (2006), 9–16 | MR

[8] Pecora L.M., Carroll T.L., “Synchronization in chaotic systems”, Phys. Rev. Lett., 64:8 (1990), 821–824 | DOI | MR | Zbl

[9] Pecora L.M., Carroll T.L., “Driving systems with chaotic signals”, Phys. Rev. A, 44:4 (1991), 2374–2383 | DOI