Ore extensions over 2-primal Noetherian rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let R be a ring and σ an automorphism of R. We prove that if R is a 2-primal Noetherian ring, then the skew polynomial ring R[x;σ] is 2-primal Noetherian. Let now δ be a σ-derivation of R. We say that R is a δ-ring if aδP(R) implies aP(R), where P(R) denotes the prime radical of R. We prove that R[x;σ,δ] is a 2-primal Noetherian ring if R is a Noetherian Q-algebra, σ and δ are such that R is a δ-ring, σ(δ(a))=δ(σ(a)), for all aR and σ(P)=PP being any minimal prime ideal of R. We use this to prove that if R is a Noetherian σ()-ring (i.e. aσ(a)P(R) implies aP(R)δσ-derivation of R such that R is a δ-ring and σ(δ(a))=δ(σ(a)), for all aR, then R[x;σ,δ] is a 2-primal Noetherian ring.
@article{BASM_2008_3_a3,
     author = {V. K. Bhat},
     title = {Ore extensions over 2-primal {Noetherian} rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {34--43},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a3/}
}
TY  - JOUR
AU  - V. K. Bhat
TI  - Ore extensions over 2-primal Noetherian rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 34
EP  - 43
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a3/
LA  - en
ID  - BASM_2008_3_a3
ER  - 
%0 Journal Article
%A V. K. Bhat
%T Ore extensions over 2-primal Noetherian rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 34-43
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a3/
%G en
%F BASM_2008_3_a3
V. K. Bhat. Ore extensions over 2-primal Noetherian rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 34-43. https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a3/

[1] Annin S., “Associated primes over skew polynomial rings”, Comm. Algebra, 30:5 (2002), 2511–2528 | DOI | MR | Zbl

[2] Argac N., Groenewald N.J., “A generalization of 2-primal near rings”, Quest. Math., 27:4 (2004), 397–413 | MR | Zbl

[3] Bhat V.K., “A note on Krull dimension of skew polynomial rings”, Lobachevskii J. Math., 22 (2006), 3–6 | MR | Zbl

[4] Bhat V.K., “Associated prime ideals of skew polynomial rings”, Beitrage Algebra Geom., 49:1 (2008), 277–283 | MR | Zbl

[5] Bhat V.K., “Differential operator rings over 2-primal rings”, Ukr. Math. Bull., 5:2 (2008), 153–158

[6] Blair W.D., Small L.W., “Embedding differential and skew-polynomial rings into Artinain rings”, Proc. Amer. Math. Soc., 109:4 (1990), 881–886 | DOI | MR | Zbl

[7] Cohn P.M., Difference Algebra, Interscience Publishers, Acad. Press, New York-London-Sydney, 1965 | MR | Zbl

[8] Cohn P.M., Free rings and their relations, Acad. Press, London-New York, 1971 | MR

[9] Gabriel P., “Représentations des Alg'‘ebres de Lie Résoulubles (d’apres J. Dixmier)”, Seminaire Bourbaki, 1968–1969, Lecture Notes in Math., 179, Springer-Verlag, Berlin, 1971, 1–22 | DOI

[10] Goodearl K.R., Warfield R.B., Jr., An introduction to non-commutative Noetherian rings, Cambridge Uni. Press, 1989 | Zbl

[11] Hong C.Y., Kwak T.K., “On minimal strongly prime ideals”, Comm. Algebra, 28:10 (2000), 4868–4878 | DOI | MR

[12] Hong C.Y., Kim N.K., Kwak T.K., “Ore-extensions of Baer and p.p.-rings”, J. Pure Appl. Algebra, 151:3 (2000), 215–226 | DOI | MR | Zbl

[13] Hong C.Y., Kim N.K., Kwak T.K., “On rings whose prime ideals are maximal”, Bull. Korean Math. Soc., 37:1 (2000), 1–9 | MR | Zbl

[14] Hong C.Y., Kim N.K., Kwak T.K., Lee Y., “On weak -regularity of rings whose prime ideals are maximal”, J. Pure Appl. Algebra, 146:1 (2000), 35–44 | DOI | MR | Zbl

[15] Kim N.K., Kwak T.K., “Minimal prime ideals in 2-primal rings”, Math. Japonica, 50:3 (1999), 415–420 | MR | Zbl

[16] Krempa J., “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl

[17] Kwak T.K., “Prime radicals of skew-polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl

[18] Marks G., “On 2-primal Ore extensions”, Comm. Algebra, 29:5 (2001), 2113–2123 | DOI | MR | Zbl

[19] McConnell J.T., Robson J.C., Noncommutative Noetherian Rings, Wiley, 1987 ; revised edition, American Math. Society, 2001 | MR | Zbl

[20] Shin G.Y., “Prime ideals and sheaf representations of a pseudo symmetric ring”, Trans. Amer. Math. Soc., 184 (1973), 43–60 | DOI | MR