Properties of one-sided ideals of pseudonormed rings when taking the quotient rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let φ:(R,ξ)(R^,ξ^) be an isomorphism of pseudonormed rings. The inequalities ξ(ab)ξ(b)ξ^(φ(a))ξ(a) are fulfilled for any a,bR{0} iff there exists a pseudonormed ring (R~,ξ~) such that (R,ξ) is a left ideal in (R~,ξ~) and the isomorphism φ can be extended up to an isometric homomorphism φ~:(R~,ξ~)(R^,ξ^).
@article{BASM_2008_3_a0,
     author = {S. A. Aleschenko and V. I. Arnautov},
     title = {Properties of one-sided ideals of pseudonormed rings when taking the quotient rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--8},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a0/}
}
TY  - JOUR
AU  - S. A. Aleschenko
AU  - V. I. Arnautov
TI  - Properties of one-sided ideals of pseudonormed rings when taking the quotient rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 3
EP  - 8
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a0/
LA  - en
ID  - BASM_2008_3_a0
ER  - 
%0 Journal Article
%A S. A. Aleschenko
%A V. I. Arnautov
%T Properties of one-sided ideals of pseudonormed rings when taking the quotient rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 3-8
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a0/
%G en
%F BASM_2008_3_a0
S. A. Aleschenko; V. I. Arnautov. Properties of one-sided ideals of pseudonormed rings when taking the quotient rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 3-8. https://geodesic-test.mathdoc.fr/item/BASM_2008_3_a0/

[1] Aleschenko S. A., Arnautov V. I., “Quotient rings of pseudonormed rings”, Buletinul Academiei de Ştiinte a Republicii Moldova, Matematica, 2006, no. 2(51), 3–16 | MR | Zbl