Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_2_a6, author = {Alexander D. Kolesnik}, title = {Moments of the {Markovian} random evolutions in two and four dimensions}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {68--80}, publisher = {mathdoc}, number = {2}, year = {2008}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a6/} }
TY - JOUR AU - Alexander D. Kolesnik TI - Moments of the Markovian random evolutions in two and four dimensions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 68 EP - 80 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a6/ LA - en ID - BASM_2008_2_a6 ER -
Alexander D. Kolesnik. Moments of the Markovian random evolutions in two and four dimensions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 68-80. https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a6/
[1] Gradshteyn I.S., Ryzhik I.M., Tables of Integrals, Sums, Series and Products, Academic Press, NY, 1980 | Zbl
[2] Kolesnik A.D., “Random motions at finite speed in higher dimensions”, J. Stat. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl
[3] Kolesnik A.D., “A note on planar random motion at finite speed”, J. Appl. Probab., 44 (2007), 838–842 | DOI | MR | Zbl
[4] Kolesnik A.D., “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–1118 | DOI | MR | Zbl
[5] Kolesnik A.D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl
[6] Masoliver J., Porrá J.M., Weiss G.H., “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI
[7] Stadje W., “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR
[8] Stadje W., “Exact probability distributions for non-correlated random walk models”, J. Stat. Phys., 56 (1989), 415–435 | DOI | MR | Zbl