Moments of the Markovian random evolutions in two and four dimensions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 68-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed-form expressions for the mixed moments of the Markovian random evolutions in the spaces R2 and R4, are obtained. The moments of the Euclidean distance from the origin at any time t>0 are also presented.
@article{BASM_2008_2_a6,
     author = {Alexander D. Kolesnik},
     title = {Moments of the {Markovian} random evolutions in two and four dimensions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {68--80},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a6/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Moments of the Markovian random evolutions in two and four dimensions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 68
EP  - 80
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a6/
LA  - en
ID  - BASM_2008_2_a6
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Moments of the Markovian random evolutions in two and four dimensions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 68-80
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a6/
%G en
%F BASM_2008_2_a6
Alexander D. Kolesnik. Moments of the Markovian random evolutions in two and four dimensions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 68-80. https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a6/

[1] Gradshteyn I.S., Ryzhik I.M., Tables of Integrals, Sums, Series and Products, Academic Press, NY, 1980 | Zbl

[2] Kolesnik A.D., “Random motions at finite speed in higher dimensions”, J. Stat. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl

[3] Kolesnik A.D., “A note on planar random motion at finite speed”, J. Appl. Probab., 44 (2007), 838–842 | DOI | MR | Zbl

[4] Kolesnik A.D., “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–1118 | DOI | MR | Zbl

[5] Kolesnik A.D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl

[6] Masoliver J., Porrá J.M., Weiss G.H., “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI

[7] Stadje W., “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR

[8] Stadje W., “Exact probability distributions for non-correlated random walk models”, J. Stat. Phys., 56 (1989), 415–435 | DOI | MR | Zbl