Discrete Optimal Control Problem with Varying Time of States Transactions of Dynamical System and Algorithm for its solving
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 46-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider time-discrete systems with finite set of states. The starting and the final states of dynamical system are given. The discrete optimal control problem with integral-time cost criterion by a trajectory is studied. An algorithm for solving the problem with varying time of states transactions is proposed. The running time of the proposed algorithm is estimated.
@article{BASM_2008_2_a4,
     author = {Dmitrii Lozovanu and Alexandru Lazari},
     title = {Discrete {Optimal} {Control} {Problem} with {Varying} {Time} of {States} {Transactions} of {Dynamical} {System} and {Algorithm} for its solving},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {46--53},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a4/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
AU  - Alexandru Lazari
TI  - Discrete Optimal Control Problem with Varying Time of States Transactions of Dynamical System and Algorithm for its solving
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 46
EP  - 53
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a4/
LA  - en
ID  - BASM_2008_2_a4
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%A Alexandru Lazari
%T Discrete Optimal Control Problem with Varying Time of States Transactions of Dynamical System and Algorithm for its solving
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 46-53
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a4/
%G en
%F BASM_2008_2_a4
Dmitrii Lozovanu; Alexandru Lazari. Discrete Optimal Control Problem with Varying Time of States Transactions of Dynamical System and Algorithm for its solving. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 46-53. https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a4/

[1] Bellman R., Kalaba R., Dynamic Programming and Modern Control Theory, Academic Press, New York and London, 1965 | MR

[2] Boltjanski W.G., Optimale Steeurung disckreter Systeme, Leipzing Akademische Verlagsgesellschaft Geest Porting K.-G., Leipzig, 1976 | Zbl

[3] Lozovanu D., “Multiobjective Control of Time-Discrete Systems and Dynamic Games on Networks”, chapter in book, Pareto Optimality, Game Theory and Equilibria, ed. A. Chinchulun, A. Migdalas, P. Pardalos, L. Pitsoulis, Springer, 2007, 365–455

[4] Lozovanu D., Pickl S., “Discrete optimal control problems on networks and dynamic games with $p$ players”, Buletine of Academy of Sciences of Moldova, Mathematics, 2004, no. 2(45), 67–88 | MR

[5] Lozovanu D., Pickl S., “Algorithm and the calculation of Nash Equilibria for multi-objective control of time discrete systems and polynomial-time algorithms for dynamic c-game on networks”, European Journal of Operational Research, 2007, no. 181(3), 198–216 | MR

[6] Lozovanu D., Pickl S., “Algorithms for solving multiobjective discrete control problems and dynamic c-game on networks”, Discrete Applied Mathematics, 2007, no. 155(14), 158–180 | MR