A~closed form asymptotic solution for the FitzHugh--Nagumo model
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 24-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of a change of unknown function and independent variable, the Cauchy problem of singular perturbation from electrophysiology, known as the FitzHugh–Nagumo model, is reduced to a regular perturbation problem (Section 1). Then, by applying the regular perturbation technique to the last problem and using an existence, uniqueness and asymptotic behavior theorem of the second and third author, the models of asymptotic approximation of an arbitrary order are deduced (Section 2). The closed-form expressions for the solution of the model of first order asymptotic approximation and for the time along the phase trajectories are derived in Section 3. In Section 4, by applying several times the method of variation of coefficients and prime integrals, the closed-form solution of the model of second order asymptotic approximation is found. The results from this paper served to the author to study (elsewhere) the relaxation oscillations versus the oscillations in two and three times corresponding to concave limit cycles (canards).
@article{BASM_2008_2_a2,
     author = {A. Georgescu and Ggheheor Nistor and Marin-Nicolae Popescu and Dinel Popa},
     title = {A~closed form asymptotic solution for the {FitzHugh--Nagumo} model},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {24--34},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a2/}
}
TY  - JOUR
AU  - A. Georgescu
AU  - Ggheheor Nistor
AU  - Marin-Nicolae Popescu
AU  - Dinel Popa
TI  - A~closed form asymptotic solution for the FitzHugh--Nagumo model
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 24
EP  - 34
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a2/
LA  - en
ID  - BASM_2008_2_a2
ER  - 
%0 Journal Article
%A A. Georgescu
%A Ggheheor Nistor
%A Marin-Nicolae Popescu
%A Dinel Popa
%T A~closed form asymptotic solution for the FitzHugh--Nagumo model
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 24-34
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a2/
%G en
%F BASM_2008_2_a2
A. Georgescu; Ggheheor Nistor; Marin-Nicolae Popescu; Dinel Popa. A~closed form asymptotic solution for the FitzHugh--Nagumo model. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 24-34. https://geodesic-test.mathdoc.fr/item/BASM_2008_2_a2/

[1] Rocşoreanu C., Georgescu A., Giurgiuţeanu N., The FitzHugh-Nagumo model. Bifurcation and dynamics, Mathematical Modelling: Theory and Applications, 10, Kluwer, Dordrecht, 2000 | MR | Zbl

[2] Sterpu M., Dinamică şi bifurcaţii pentru două modele Van der Pol generelizate, Seria MatematicĂplicată şi Industrială, 8, Ed. Univ. Piteşti, 2001 | MR | Zbl

[3] Giurgiuţeanu N., Contribuţii la studiul sistemelor de ecuaţii diferenţiale prin metode numerice. Aplicaţii la biologie, Teză de Doctorat, Institutul de matematicăl Academiei Române, Bucureşti, 1997

[4] Bazavan P., Numerical algorithms in the study of dynamical systems, Sitech, Craiova, 2005

[5] Rîjîc I.M., Gradstein I.S., Tabele de integrale, sume, serii şi produse, Ed. Tehnică, Bucureşti, 1955