Attractors in affine differential systems with impulsive control
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 153-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that an asymptotic equilibrium of an affine system of differential equations can become a strange attractor under affine impulsive control. The linear oscillator is studied as example.
@article{BASM_2008_1_a9,
     author = {Valeriu Gu\c{t}u},
     title = {Attractors in affine differential systems with impulsive control},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {153--160},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a9/}
}
TY  - JOUR
AU  - Valeriu Guţu
TI  - Attractors in affine differential systems with impulsive control
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 153
EP  - 160
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a9/
LA  - en
ID  - BASM_2008_1_a9
ER  - 
%0 Journal Article
%A Valeriu Guţu
%T Attractors in affine differential systems with impulsive control
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 153-160
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a9/
%G en
%F BASM_2008_1_a9
Valeriu Guţu. Attractors in affine differential systems with impulsive control. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 153-160. https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a9/

[1] Samoilenko A., Perestyuk N., Differential Equations with Impulses, Vishcha shkola, Kiev, 1987 (in Russian)

[2] Barnsley M., Fractals Everywhere, Acad. Press Profess., Boston, 1993 | MR | Zbl

[3] Glavan V., Guţu V., “On the dynamics of contracting Relations”, Analysis and Optimization of Differential Systems, eds. V. Barbu et al., Kluwer Acad. Publ., 2003, 179–188 | MR | Zbl

[4] Glăvan V., Guţu V., “Attractors and fixed points of weakly contracting relations”, Fixed Point Theory, 5:2 (2004), 265–284 | MR

[5] Feller W., An Introduction to Probability Theory and its Applications, Vol. 1, John Wiley Sons, Inc., New York–London–Sydney, 1968 | MR | Zbl

[6] Hutchinson J. F., “Fractals and self-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl

[7] Williams R. F., “Composition of contractions”, Bol. Soc. Brasil. Mat., 2 (1971), 55–59 | DOI | MR | Zbl

[8] Glavan V., Guţu V., Karamzin D. Iu., “Strange attractors as effect of impulsive actions on linear oscillators”, Theoretical and Applied Problems of Nonlinear Analysis, CC RAS, Moscow, 2007, 148–156 | MR