n-Homogeneous dynamical systems and n-ary algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 139-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

A bijective correspondence between the classes of center-affinely equivalent n-homogeneous equations (n2) and the classes of isomorphic commutative n-ary algebras is established. It generates a correspondence between the properties of these equations and the structural properties of the associated n-ary algebras.
@article{BASM_2008_1_a8,
     author = {Ilie Burdujan},
     title = {$n${-Homogeneous} dynamical systems and $n$-ary algebras},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {139--152},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a8/}
}
TY  - JOUR
AU  - Ilie Burdujan
TI  - $n$-Homogeneous dynamical systems and $n$-ary algebras
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 139
EP  - 152
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a8/
LA  - en
ID  - BASM_2008_1_a8
ER  - 
%0 Journal Article
%A Ilie Burdujan
%T $n$-Homogeneous dynamical systems and $n$-ary algebras
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 139-152
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a8/
%G en
%F BASM_2008_1_a8
Ilie Burdujan. $n$-Homogeneous dynamical systems and $n$-ary algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 139-152. https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a8/

[1] Kaplan J. L., Yorke J. A., “Nonassociative real algebras and quadratic differential equations”, Nonlinear Analysis, Theory, Methods and Applications, 3:1 (1979), 49–51 | DOI | MR | Zbl

[2] Kinyon K. M., Sagle A. A., “Quadratic Dynamical Systems and Algebras”, J. of Diff. Eqs., 117 (1995), 67–126 | DOI | MR | Zbl

[3] Chilov G. E., Analysis. Finite dimensional spaces, Ed. St. Encicl., Bucharest, 1983, Romanien translation

[4] Walker S., Algebras and differential equations, Hadronic Press, Palm Harbor, 1991 | MR