Determinantal Analysis of the Polynomial Integrability of Differential Systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 105-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with the polynomial and formal (formal series) integrability of the polynomial differential systems around a singular point, namely the conditions which assure the start of the algorithmic process for computing the polynomial or the formal first integrals. When the linear part of the differential system is nonzero, we have established ([9]) the existence of the so called starting equations whose (integer) solutions are exactly the partition of the lower degree of the eventual formal first integrals. In this work, we study some extensions of the starting equations to the case when the linear part is zero and, particularly, to the bidimensionnal homogeneous differential systems. The principal tool used here is the classical invariant theory.
@article{BASM_2008_1_a5,
     author = {Driss Boularas and Abdelkader Chouikrat},
     title = {Determinantal {Analysis} of the {Polynomial} {Integrability} of {Differential} {Systems}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {105--124},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a5/}
}
TY  - JOUR
AU  - Driss Boularas
AU  - Abdelkader Chouikrat
TI  - Determinantal Analysis of the Polynomial Integrability of Differential Systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 105
EP  - 124
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a5/
LA  - en
ID  - BASM_2008_1_a5
ER  - 
%0 Journal Article
%A Driss Boularas
%A Abdelkader Chouikrat
%T Determinantal Analysis of the Polynomial Integrability of Differential Systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 105-124
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a5/
%G en
%F BASM_2008_1_a5
Driss Boularas; Abdelkader Chouikrat. Determinantal Analysis of the Polynomial Integrability of Differential Systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 105-124. https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a5/

[1] Singer M. F., “Liouvillian First Integral of Differential Equations”, Transactions of the AMS, 333 (1992), 673–688 | DOI | MR | Zbl

[2] Baider A., Churchill R. C., Rod D. L., Singer M. F., “On the infinitesimal geometry of Integrable systems”, Mechanics day (Waterloo, ON, 1992), Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996, 5–56 | MR | Zbl

[3] Moulin-Ollagnier J., “Liouvillian Integration of the Lotka-Volterra System”, Qualitative Theory of Dynamical Systems, 3 (2002), 19–28 | DOI | MR | Zbl

[4] Moulin-Ollagnier J., Nowicki A., Strelcyn J.-M., “On the non-existence of constants of derivations: the proof of a theorem of Jouanolou and its development”, Bull. Sci. math., 119 (1995), 195–233 | MR | Zbl

[5] Yoshida H., “Necessary Conditions for the Existence of Algebraic First Integrals”, Celestial Mechanics, 31 (1983), 363–379 | DOI | MR | Zbl

[6] Liu C., Wu H., Yang J., “The Kowalevskaya Exponents and Rational Integrability of Polynomial Differential Systems”, Bull. Sci. math., 130 (2006), 234–245 | DOI | MR | Zbl

[7] Furta S. D., “On Non-integrability of General Systems of Differential Equations”, Z. angew Math. Phys. (ZAMP), 47 (1996), 112–131 | DOI | MR | Zbl

[8] Zhang X., “Local First Integrals for Systems of Differential Equations”, J. Phys. A: Math. Gen., 36 (2003), 12243–12253 | DOI | MR | Zbl

[9] Boularas D., Chouikrat A., “Équations d'amorçage d'intégrales premières formelles”, Linear and Multilinear Algebra, 54:3 (2006), 219–233 | DOI | MR | Zbl

[10] Sibirskii C. S., Introduction to the algebraic theory of invariants of differential equations, Nonlinear Science, Theory and Applications, Manchester University Press, 1988 | MR

[11] Boularas D., “Computation of Affine Covariants of Quadratic Bivariate Differential Systems”, Journal of Complexity, 16:4 (2000), 691–715 | DOI | MR | Zbl

[12] Vulpe N. I., Polynomial bases of Comitants of Differential Systems and Their Applications in Qualitative Theory, Stiintsa, Chisinau, 1986 (in Russian) | MR

[13] Cox D., Little J., O'shea D., Ideals, Varieties and Algorithms, Springer-Verlag, 1992 | MR

[14] Weyl H., The Classical Groups, Their Invariants and Representations, Princeton, 1939 | MR

[15] Weyman J., “Gordan ideals in the theory of binary forms”, Journal of Algebra, 161 (1993), 370–391 | DOI | MR | Zbl