Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 27-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the class QSL4 of all real quadratic differential systems dxdt=p(x,y), dydt=q(x,y) with gcd(p,q)=1, having invariant lines of total multiplicity four and a finite set of singularities at infinity. We first prove that all the systems in this class are integrable having integrating factors which are Darboux functions and we determine their first integrals. We also construct all the phase portraits for the systems belonging to this class. The group of affine transformations and homotheties on the time axis acts on this class. Our Main Theorem gives necessary and sufficient conditions, stated in terms of the twelve coefficients of the systems, for the realization of each one of the total of 69 topologically distinct phase portraits found in this class. We prove that these conditions are invariant under the group action.
@article{BASM_2008_1_a3,
     author = {Dana Schlomiuk and Nicolae Vulpe},
     title = {Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {27--83},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/}
}
TY  - JOUR
AU  - Dana Schlomiuk
AU  - Nicolae Vulpe
TI  - Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 27
EP  - 83
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/
LA  - en
ID  - BASM_2008_1_a3
ER  - 
%0 Journal Article
%A Dana Schlomiuk
%A Nicolae Vulpe
%T Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 27-83
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/
%G en
%F BASM_2008_1_a3
Dana Schlomiuk; Nicolae Vulpe. Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 27-83. https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/

[1] Moscow, 1966 | MR | Zbl

[2] Arnold V., Métodes mathématiques de la mécanique classique, Éditions MIR, Moscou, 1976 | MR

[3] Artes J. C., Llibre J., Schlomiuk D., “The geometry of quadratic differential systems with a weak focus of second order”, International Journal of Bifurcation Theory and Chaos, 16:11 (2006), 3127–3194 | DOI | MR | Zbl

[4] Baltag V. A., Vulpe N. I., “Total multiplicity of all finite critical points of the polynomial differential system”, Planar nonlinear dynamical systems (Delft, 1995), Differential Equations Dynam. Systems, 5:3-4 (1997), 455–471 | MR | Zbl

[5] | MR | Zbl

[6] Buium A., Phyllis J. Cassidy, “Differential algebraic geometry and differential algebraic groups: from algebraic differential equations to Diophantine geometry”, Selected works of Ellis Kolchin, eds. H. Bass, A. Buium and P. J. Cassidy, Amer. Math. Soc., Providence, RI, 1999, 567–639 | MR

[7] Chavarriga J., Llibre J., Sotomayor J., “Algebraic solutions for polynomial systems with emphasis in the quadratic case”, Exposition. Math., 15:2 (1997), 161–173 | MR | Zbl

[8] Cristopher C. J., “Invariant algebraic curves and conditions for a center”, Proceedings of the Royal Society of Edinburgh, 124A (1994), 1209–1229 | MR

[9] Cristopher C. J., Llibre J., “Algebraic Aspects of Integrability for Polynomial Systems”, Qualitative Theory of Dynamical Systems, 1:1 (1999), 71–95 | DOI | MR

[10] Darboux G., “Mémoire sur les équations différentielles du premier ordre et du premier degré”, Bulletin de Sciences Mathématiques, 2me série, 2:1 (1878), 60–96 ; 123–144 ; 151–200 | Zbl

[11] Fulton W., Algebraic curves. An introduction to Algebraic Geometry, W.A. Benjamin, Inc., New York, 1969 | MR | Zbl

[12] Ecalle J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Math., Hermann, Paris, 1992 | MR

[13] Grace J. H., Young A., The algebra of invariants, Stechert, New York, 1941

[14] Hartman P., Ordinary Differential Equations, John Wiley Sons, New York, 1964 | MR | Zbl

[15] Ilyashenko Y., Finiteness Theorems for Limit Cycles, Trans. of Math. Monographs, 94, Amer. Math. Soc., 1991 | MR

[16] Jouanolou J. P., Equations de Pfaff Algébriques, Lecture Notes in Mathematics, 708, Springer-Verlag, New York/Berlin, 1979 | MR | Zbl

[17] Kooij R., Christopher C., “Algebraic invariant curves and the integrability of polynomial systems”, Appl. Math. Lett., 6 (1993), 51–53 | DOI | MR | Zbl

[18] Olver P. J., Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR

[19] Poincaré H., “Sur l'intégration algébrique des équations différentielles”, C. R. Acad. Sci. Paris, 112 (1891), 761–764 | Zbl

[20] Poincaré H., “Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré. I”, Rend. Circ. Mat. Palermo, 5 (1891), 161–191 | DOI | Zbl

[21] Ritt J. F., Differential Equations from the Algebraic Stand Point, Amer. Math. Soc. Colloq. Pub., 14, Amer. Math. Soc., New York, 1934

[22] Ritt J. F., Differential algebra, Amer. Math. Soc. Colloq. Pub., 33, Amer. Math. Soc., New York, 1950 | MR | Zbl

[23] Schlomiuk D., “Elementary first integrals and algebraic invariant curves of differential equations”, Expo. Math., 11 (1993), 433–454 | MR | Zbl

[24] Schlomiuk D., “Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields”, In Bifurcations and Periodic Orbits of Vector Fields, ed. D. Schlomiuk, 1993, 429–467 | MR | Zbl

[25] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qualitative Theory of Dynamical Systems, 5 (2004), 135–194 | DOI | MR | Zbl

[26] Schlomiuk D., Vulpe N., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl

[27] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl

[28] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountains J. of Math., 38:6 (2008), 2015–2075 | DOI | MR

[29] Schlomiuk D., Vulpe N., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20:4 (2008), 737–775 | DOI | MR | Zbl

[30] Sibirskii K. S., Introduction to the algebraic theory of invariants of differential equations, Translated from the Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 | MR

[31] Spivak M., Calculus on manifolds, W.A. Benjamin, Inc., 1965 | MR | Zbl

[32] Zhang P., “On the distribution and number of limit cycles for quadratic systems with two foci”, Acta Math. Sin., 44 (2001), 37–44 (in Chinese) | MR | Zbl

[33] Zhang P., “Quadratic systems with a 3rd-order (or 2nd-order) weak focus”, Ann. Diff. Eqs., 17 (2001), 287–294 | MR | Zbl

[34] Żołądek H., “On algebraic solutions of algebraic Pfaff equations”, Studia Mathematica, 114 (1995), 117–126 | MR | Zbl