Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_1_a3, author = {Dana Schlomiuk and Nicolae Vulpe}, title = {Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {27--83}, publisher = {mathdoc}, number = {1}, year = {2008}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/} }
TY - JOUR AU - Dana Schlomiuk AU - Nicolae Vulpe TI - Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 27 EP - 83 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/ LA - en ID - BASM_2008_1_a3 ER -
%0 Journal Article %A Dana Schlomiuk %A Nicolae Vulpe %T Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 27-83 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/ %G en %F BASM_2008_1_a3
Dana Schlomiuk; Nicolae Vulpe. Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 27-83. https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a3/
[2] Arnold V., Métodes mathématiques de la mécanique classique, Éditions MIR, Moscou, 1976 | MR
[3] Artes J. C., Llibre J., Schlomiuk D., “The geometry of quadratic differential systems with a weak focus of second order”, International Journal of Bifurcation Theory and Chaos, 16:11 (2006), 3127–3194 | DOI | MR | Zbl
[4] Baltag V. A., Vulpe N. I., “Total multiplicity of all finite critical points of the polynomial differential system”, Planar nonlinear dynamical systems (Delft, 1995), Differential Equations Dynam. Systems, 5:3-4 (1997), 455–471 | MR | Zbl
[6] Buium A., Phyllis J. Cassidy, “Differential algebraic geometry and differential algebraic groups: from algebraic differential equations to Diophantine geometry”, Selected works of Ellis Kolchin, eds. H. Bass, A. Buium and P. J. Cassidy, Amer. Math. Soc., Providence, RI, 1999, 567–639 | MR
[7] Chavarriga J., Llibre J., Sotomayor J., “Algebraic solutions for polynomial systems with emphasis in the quadratic case”, Exposition. Math., 15:2 (1997), 161–173 | MR | Zbl
[8] Cristopher C. J., “Invariant algebraic curves and conditions for a center”, Proceedings of the Royal Society of Edinburgh, 124A (1994), 1209–1229 | MR
[9] Cristopher C. J., Llibre J., “Algebraic Aspects of Integrability for Polynomial Systems”, Qualitative Theory of Dynamical Systems, 1:1 (1999), 71–95 | DOI | MR
[10] Darboux G., “Mémoire sur les équations différentielles du premier ordre et du premier degré”, Bulletin de Sciences Mathématiques, 2me série, 2:1 (1878), 60–96 ; 123–144 ; 151–200 | Zbl
[11] Fulton W., Algebraic curves. An introduction to Algebraic Geometry, W.A. Benjamin, Inc., New York, 1969 | MR | Zbl
[12] Ecalle J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Math., Hermann, Paris, 1992 | MR
[13] Grace J. H., Young A., The algebra of invariants, Stechert, New York, 1941
[14] Hartman P., Ordinary Differential Equations, John Wiley Sons, New York, 1964 | MR | Zbl
[15] Ilyashenko Y., Finiteness Theorems for Limit Cycles, Trans. of Math. Monographs, 94, Amer. Math. Soc., 1991 | MR
[16] Jouanolou J. P., Equations de Pfaff Algébriques, Lecture Notes in Mathematics, 708, Springer-Verlag, New York/Berlin, 1979 | MR | Zbl
[17] Kooij R., Christopher C., “Algebraic invariant curves and the integrability of polynomial systems”, Appl. Math. Lett., 6 (1993), 51–53 | DOI | MR | Zbl
[18] Olver P. J., Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR
[19] Poincaré H., “Sur l'intégration algébrique des équations différentielles”, C. R. Acad. Sci. Paris, 112 (1891), 761–764 | Zbl
[20] Poincaré H., “Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré. I”, Rend. Circ. Mat. Palermo, 5 (1891), 161–191 | DOI | Zbl
[21] Ritt J. F., Differential Equations from the Algebraic Stand Point, Amer. Math. Soc. Colloq. Pub., 14, Amer. Math. Soc., New York, 1934
[22] Ritt J. F., Differential algebra, Amer. Math. Soc. Colloq. Pub., 33, Amer. Math. Soc., New York, 1950 | MR | Zbl
[23] Schlomiuk D., “Elementary first integrals and algebraic invariant curves of differential equations”, Expo. Math., 11 (1993), 433–454 | MR | Zbl
[24] Schlomiuk D., “Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields”, In Bifurcations and Periodic Orbits of Vector Fields, ed. D. Schlomiuk, 1993, 429–467 | MR | Zbl
[25] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qualitative Theory of Dynamical Systems, 5 (2004), 135–194 | DOI | MR | Zbl
[26] Schlomiuk D., Vulpe N., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl
[27] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl
[28] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountains J. of Math., 38:6 (2008), 2015–2075 | DOI | MR
[29] Schlomiuk D., Vulpe N., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20:4 (2008), 737–775 | DOI | MR | Zbl
[30] Sibirskii K. S., Introduction to the algebraic theory of invariants of differential equations, Translated from the Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 | MR
[31] Spivak M., Calculus on manifolds, W.A. Benjamin, Inc., 1965 | MR | Zbl
[32] Zhang P., “On the distribution and number of limit cycles for quadratic systems with two foci”, Acta Math. Sin., 44 (2001), 37–44 (in Chinese) | MR | Zbl
[33] Zhang P., “Quadratic systems with a 3rd-order (or 2nd-order) weak focus”, Ann. Diff. Eqs., 17 (2001), 287–294 | MR | Zbl
[34] Żołądek H., “On algebraic solutions of algebraic Pfaff equations”, Studia Mathematica, 114 (1995), 117–126 | MR | Zbl