On theory of surfaces defined by the first order systems of equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 161-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of surfaces defined by spatial systems of differential equations are studied. The Monge equations connected with the first order nonlinear p.d.e. are investigated. The properties of Riemannian metrics defined by the systems of differential equations having applications in theory of nonlinear dynamical systems with regular and chaotic behaviour are considered.
@article{BASM_2008_1_a10,
     author = {Valery Dryuma},
     title = {On theory of surfaces defined by the first order systems of equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {161--175},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a10/}
}
TY  - JOUR
AU  - Valery Dryuma
TI  - On theory of surfaces defined by the first order systems of equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 161
EP  - 175
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a10/
LA  - en
ID  - BASM_2008_1_a10
ER  - 
%0 Journal Article
%A Valery Dryuma
%T On theory of surfaces defined by the first order systems of equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 161-175
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a10/
%G en
%F BASM_2008_1_a10
Valery Dryuma. On theory of surfaces defined by the first order systems of equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 161-175. https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a10/

[1] Giacomini N., Neukirch S., Integrals of motion and the shape of the attractor for the Lorenz model, , vol. 2, 3 Mar 1997, 1–17 arXiv: chao-dyn/9702016 | MR

[2] Jaume Llibre, Xiang Zhang, “Invariant algebraic surfaces on the Lorenz system”, Journal of Mathematical Physics, 43:3 (2002), 1622–1645 | DOI | MR | Zbl

[3] Dryuma V., “Toward a theory of spaces of constant curvature”, Theoretical and Mathematical Physics, 146:1 (2006), 34–44 ; , 18 May 2005, 1–12 ArXiv: math.DG/0505376 | DOI | MR

[4] Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, eds. A. B. Shabat et al., Kluwer Academic Publishers, 115–156 | MR | Zbl

[5] Dryuma V., “The Riemann Extension in theory of differential equations and their applications”, Matematicheskaya fizika, analiz, geometriya, Kharkov, 10:3 (2003), 1–19 | MR

[6] Dryuma V., “Riemann extensions in theory of the first order systems of differential equations”, Barcelona Conference in Planar Vector Fields, Abstracts (CRM, Spain, February 13–17, 2006), 7–8