The transvectants and the integrals for Darboux systems of differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 4-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the algebraic theory of invariants of differential equations to integrate the polynomial differential systems dx/dt=P1(x,y)+xC(x,y), dy/dt=Q1(x,y)+yC(x,y), where real homogeneous polynomials P1 and Q1 have the first degree and C(x,y) is a real homogeneous polynomial of degree r1. In generic cases the invariant algebraic curves and the first integrals for these systems are constructed. The constructed invariant algebraic curves are expressed by comitants and invariants of investigated systems.
@article{BASM_2008_1_a1,
     author = {V. Baltag and I. Calin},
     title = {The transvectants and the integrals for {Darboux} systems of differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {4--18},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a1/}
}
TY  - JOUR
AU  - V. Baltag
AU  - I. Calin
TI  - The transvectants and the integrals for Darboux systems of differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 4
EP  - 18
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a1/
LA  - en
ID  - BASM_2008_1_a1
ER  - 
%0 Journal Article
%A V. Baltag
%A I. Calin
%T The transvectants and the integrals for Darboux systems of differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 4-18
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a1/
%G en
%F BASM_2008_1_a1
V. Baltag; I. Calin. The transvectants and the integrals for Darboux systems of differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 4-18. https://geodesic-test.mathdoc.fr/item/BASM_2008_1_a1/

[1] Dumortier F., Llibre J., Artes J., Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, Heidelberg, 2006 | MR | Zbl

[2] Lucashevich N. A., “The integral curves of Darboux equations”, Diff. Equations, 2:5 (1966), 628–633 (in Russian) | MR

[3] Dedok N. N., “On the singular points of differential equation Darboux”, Diff. Equations, 2:10 (1972), 1880–1881 (in Russian) | MR

[4] Amelkin V. V., Lucashevich N. A, Sadovski A. P., Nonlinear variation in systems of the second order, Minsk, 1982 (in Russian)

[5] Gorbuzov V. N., Samodurov A. A., Darboux equation and its analogues: Optional course manual, Grodno, 1985 (in Russian)

[6] Gine' J., Llibre J., “Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities”, J. Differential Equations, 197 (2004), 147–161 | DOI | MR | Zbl

[7] Chavarriga J., Gine' J., Grau M., “Integrable systems via polynomial inverse integrating factors”, Bull. Sci. Math., 126 (2002), 315–331 | DOI | MR | Zbl

[8] Chavarriga J., Giacomini H., Gine' J., Llibre J., “On the Integrability of Two-Dimensional Flows”, J. Differential Equations, 157 (1999), 163–182 | DOI | MR | Zbl

[9] Chavarriga J., Gine' J., “Polynomial first integrals of systems in the plane with center type linear part”, Nonlinear Anal., 31 (1998), 521–535 | DOI | MR | Zbl

[10] Chavarriga J., Gine' J., “Integrability of cubic systems with degenerate infinity”, Differential Equations Dynam. Systems, 6:4 (1998), 425–438 | MR | Zbl

[11] Gorbuzov V. N., Tyshchenko V. Yu., “Particular integrals of systems of ordinary differential equations”, Mat. Sb., 183:3 (1992), 76–94 (in Russian) | MR | Zbl

[12] Vulpe N. I., Costas S. I., “The center-affine invariant conditions for existence of the limit cycle for one Darboux system”, Dinamicheskie Sistemy i Kraevye Zadachi, Matem. Issled., 92, 1987, 147–161 (in Russian) | MR

[13] Vulpe N. I., Costas S. I., The center-affine invariant conditions of topological distinctions of the Darboux differential systems with cubic nonlinearities, Preprint, Chisinau, 1989 (in Russian)

[14] Diaconescu O. V., Popa M. N., “Lie algebras of operators and invariant $GL(2,\mathbb R)$–integrals for Darboux type differential systems”, Buletinul Academiei de Ştiinţe a RM. Matematica, 2006, no. 3(52), 3–16 | MR | Zbl

[15] Artes J., Llibre J., Vulpe N., “Quadratic systems with rational first integral of degree 2: a complete classification in the coefficient space $\mathbb R^{12}$”, Rendiconti Del Circolo Matematico di Palermo, Ser. II, LVI, 147–161

[16] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Manchester University Press, 1988 | MR | Zbl

[17] Calin Iu., “On rational bases of $GL(2,\mathbb R)$-comitants of planar polynomial systems of diferential equations”, Buletinul Academiei de Ştiinţe a RM, Matematica, 2003, no. 2(42), 69–86 | MR | Zbl

[18] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964 | MR | Zbl

[19] Driss Boularas, Calin Iu., Timochouk L., Vulpe N., $T$-comitants of quadratic systems: A study via the translation invariants, Report 96-90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996