LiScNLE~-- a~Matlab package for some nonlinear partial differential evolution equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We will present a MATLAB package for nonlinear evolution equations, based on the Lyapunov–Schmidt(LS) method. The eigenfunctions basis of the linear part is used to represent the solution at every time level (or for every value of the parameters in the case of bifurcation analysis). These eigenfunctions are calculated in a preprocessing stage or are given by the user.
@article{BASM_2007_3_a1,
     author = {Titus Petrila and Damian Trif},
     title = {LiScNLE~-- {a~Matlab} package for some nonlinear partial differential evolution equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {23--34},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/}
}
TY  - JOUR
AU  - Titus Petrila
AU  - Damian Trif
TI  - LiScNLE~-- a~Matlab package for some nonlinear partial differential evolution equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 23
EP  - 34
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/
LA  - en
ID  - BASM_2007_3_a1
ER  - 
%0 Journal Article
%A Titus Petrila
%A Damian Trif
%T LiScNLE~-- a~Matlab package for some nonlinear partial differential evolution equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 23-34
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/
%G en
%F BASM_2007_3_a1
Titus Petrila; Damian Trif. LiScNLE~-- a~Matlab package for some nonlinear partial differential evolution equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 23-34. https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/

[1] Cesari L., “Functional Analysis and Galerkin's Method”, Mich. Math. J., 11:3 (1964), 383–414 | MR

[2] Cañada A., Ureña A. J., “Asymptotic Behaviour of the Solvability Set for Pendulum Type Equations with Linear Dampuing and Homogeneous Dirichlet Conditions”, Electron. J. Diff. Eqns., Conf., 2001, no. 06, 55–64, . http://ejde.math.unt.edu | MR | Zbl

[3] Trif D., LiScEig Tutorial 2005, MATLAB Central $>$ File Exchange $>$ Mathematics $>$ Differential Equations $>$ LiScEig 1.0 http://www.mathworks.nl/matlabcentral/fileexchange

[4] Trif D., LiScNLS Tutorial 2005, MATLAB Central $>$ File Exchange $>$ Mathematics $>$ Differential Equations $>$ LiScNLS 1.0 http://www.mathworks.nl/matlabcentral/fileexchange

[5] Petrila T., Trif D., Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Springer, 2005 | MR | Zbl

[6] Trif D., “The Lyapunov-Schmidt method for two-point boundary value problems”, Fixed Point Theory, 6:1 (2005), 119–132 | MR | Zbl

[7] Ledoux V., MATSLISE package, http://users.ugent.be/\allowbreakṽledoux/MATSLISE/

[8] Adomaitis R. A., Lin Yi-hung, A Collocation/Quadrature Based Sturm-Liouville Problem Solver, ISR Technical Research Report TR 99-01

[9] MacLeod A. J., An automatic matrix approach to the Chebyshev series solution of differential equations, http://maths.paisley.ac.uk/allanm/amcltech.htm

[10] Liefvendahl M., A Chebyshev tau spectral method for the calculation of Eigenvalues and pseudospectra, http://www.nada.kth.se/m̃li/research.html

[11] Trif D., LiScNLE Tutorial 2006, MATLAB Central $>$ File Exchange $>$ Mathematics $>$ Differential Equations $>$ LiScNLE 1.0 http://www.mathworks.nl/matlabcentral/fileexchange

[12] Auzinger W., Kneisl G., Koch O., Weinmuller E. B., SBVP 1.0 A Matlab solver for singular boundary value problems, ANUM preprint no. 02/02, Technische Universitat Wien