Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2007_3_a1, author = {Titus Petrila and Damian Trif}, title = {LiScNLE~-- {a~Matlab} package for some nonlinear partial differential evolution equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {23--34}, publisher = {mathdoc}, number = {3}, year = {2007}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/} }
TY - JOUR AU - Titus Petrila AU - Damian Trif TI - LiScNLE~-- a~Matlab package for some nonlinear partial differential evolution equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 23 EP - 34 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/ LA - en ID - BASM_2007_3_a1 ER -
%0 Journal Article %A Titus Petrila %A Damian Trif %T LiScNLE~-- a~Matlab package for some nonlinear partial differential evolution equations %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2007 %P 23-34 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/ %G en %F BASM_2007_3_a1
Titus Petrila; Damian Trif. LiScNLE~-- a~Matlab package for some nonlinear partial differential evolution equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 23-34. https://geodesic-test.mathdoc.fr/item/BASM_2007_3_a1/
[1] Cesari L., “Functional Analysis and Galerkin's Method”, Mich. Math. J., 11:3 (1964), 383–414 | MR
[2] Cañada A., Ureña A. J., “Asymptotic Behaviour of the Solvability Set for Pendulum Type Equations with Linear Dampuing and Homogeneous Dirichlet Conditions”, Electron. J. Diff. Eqns., Conf., 2001, no. 06, 55–64, . http://ejde.math.unt.edu | MR | Zbl
[3] Trif D., LiScEig Tutorial 2005, MATLAB Central $>$ File Exchange $>$ Mathematics $>$ Differential Equations $>$ LiScEig 1.0 http://www.mathworks.nl/matlabcentral/fileexchange
[4] Trif D., LiScNLS Tutorial 2005, MATLAB Central $>$ File Exchange $>$ Mathematics $>$ Differential Equations $>$ LiScNLS 1.0 http://www.mathworks.nl/matlabcentral/fileexchange
[5] Petrila T., Trif D., Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Springer, 2005 | MR | Zbl
[6] Trif D., “The Lyapunov-Schmidt method for two-point boundary value problems”, Fixed Point Theory, 6:1 (2005), 119–132 | MR | Zbl
[7] Ledoux V., MATSLISE package, http://users.ugent.be/\allowbreakṽledoux/MATSLISE/
[8] Adomaitis R. A., Lin Yi-hung, A Collocation/Quadrature Based Sturm-Liouville Problem Solver, ISR Technical Research Report TR 99-01
[9] MacLeod A. J., An automatic matrix approach to the Chebyshev series solution of differential equations, http://maths.paisley.ac.uk/allanm/amcltech.htm
[10] Liefvendahl M., A Chebyshev tau spectral method for the calculation of Eigenvalues and pseudospectra, http://www.nada.kth.se/m̃li/research.html
[11] Trif D., LiScNLE Tutorial 2006, MATLAB Central $>$ File Exchange $>$ Mathematics $>$ Differential Equations $>$ LiScNLE 1.0 http://www.mathworks.nl/matlabcentral/fileexchange
[12] Auzinger W., Kneisl G., Koch O., Weinmuller E. B., SBVP 1.0 A Matlab solver for singular boundary value problems, ANUM preprint no. 02/02, Technische Universitat Wien