On natural and conatural sets of left ideals of a~ring
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The natural and conatural sets of left ideals of a ring R are defined by analogy with natural and conatural classes of left R-modules [4,5]. Some characterizations and properties of such sets are indicated. The lattices of natural sets R-Nat and of conatural sets R-Conat of R are treated as skeletons of more wide lattices of closed and coclosed sets. In particular, R-Nat and R-Conat are boolean lattices.
@article{BASM_2007_2_a2,
     author = {A. I. Kashu},
     title = {On natural and conatural sets of left ideals of a~ring},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {25--32},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_2_a2/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - On natural and conatural sets of left ideals of a~ring
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 25
EP  - 32
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2007_2_a2/
LA  - en
ID  - BASM_2007_2_a2
ER  - 
%0 Journal Article
%A A. I. Kashu
%T On natural and conatural sets of left ideals of a~ring
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 25-32
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2007_2_a2/
%G en
%F BASM_2007_2_a2
A. I. Kashu. On natural and conatural sets of left ideals of a~ring. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 25-32. https://geodesic-test.mathdoc.fr/item/BASM_2007_2_a2/

[1] Dauns J., “Module types”, Rocky Mountain Journal of Mathematics, 27:2 (1997), 503–557 | DOI | MR | Zbl

[2] Dauns J., “Lattices of classes of modules”, Commun. in Algebra, 27:9 (1999), 4363–4387 | DOI | MR | Zbl

[3] Zhou Y., “The lattice of natural classes of modules”, Commun. in Algebra, 24:5 (1996), 1637–1648 | DOI | MR | Zbl

[4] Dauns J., Zhou Y., Classes of modules, Chapman and Hall/CRC, London–New-York, 2006 | MR | Zbl

[5] Garcia A. A., Rincon H., Montes J. R., “On the lattices of natural and conatural classes in $R$-Mod”, Commun. in Algebra, 29:2 (2001), 541–556 | DOI | MR | Zbl

[6] Kashu A. I., “On natural classes of $R$-modules in the language of ring $R$”, Bulet. A.Ş.R.M. Matematica, 2004, no. 2(45), 95–101 | MR | Zbl

[7] Kashu A. I., Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (in Russian) | MR

[8] Birkhoff G., Lattice theory, Providence, Rhode Island, 1967 | MR

[9] Grätzer G., General lattice theory, Akademic-Verlag, Berlin, 1978 | MR | Zbl