GL(2,R)-orbits in a~competing species model
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 101-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

A particular model with two parameters describing the dynamics of two competing species is analyzed from algebraic viewpoint involving the GL(2,R)-orbits.
@article{BASM_2007_1_a9,
     author = {Raluca Mihaela Georgescu and Elena Naidenova},
     title = {$GL(2,\mathbb R)$-orbits in a~competing species model},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {101--106},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a9/}
}
TY  - JOUR
AU  - Raluca Mihaela Georgescu
AU  - Elena Naidenova
TI  - $GL(2,\mathbb R)$-orbits in a~competing species model
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 101
EP  - 106
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a9/
LA  - en
ID  - BASM_2007_1_a9
ER  - 
%0 Journal Article
%A Raluca Mihaela Georgescu
%A Elena Naidenova
%T $GL(2,\mathbb R)$-orbits in a~competing species model
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 101-106
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a9/
%G en
%F BASM_2007_1_a9
Raluca Mihaela Georgescu; Elena Naidenova. $GL(2,\mathbb R)$-orbits in a~competing species model. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 101-106. https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a9/

[1] Boularas D., Braicov A., Vulpe N., “The $GL(2,\mathbb{R})$-orbits of differential system with quadratic nonlinearities”, Proc. of the 2-nd Conference of the Mathematical Society of the Rep. of Moldova, Chisinau, 2004, 65–67

[2] Hirsch M. W., Smale S., Devaney R. L., Differential equations, dynamical systems, and an introduction to chaos, Academic Elsevier, New York–Amsderdam, 2004, 246–254 | MR

[3] Georgescu R.-M., “Bifurcation in a two competing species model”, Theodor Angheluta seminar, 2006 (to appear) | MR

[4] Academic New York, 1982 | MR | Zbl | Zbl

[5] Popa M. N., Application of algebraic methods to differental equations, Flower Power, Pitesti, 2004 (in Romanian) | MR | Zbl

[6] Sibirsky K., Introduction to algebraic theory of invariants of differential equations, Stiinta, Chisinau, 1982 (in Russian); 1988 (in English) | Zbl