Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2007_1_a4, author = {Dorel Fetcu}, title = {Biharmonic curves in {Cartan--Vranceanu} $(2n+1)$-dimensional spaces}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {59--65}, publisher = {mathdoc}, number = {1}, year = {2007}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a4/} }
TY - JOUR AU - Dorel Fetcu TI - Biharmonic curves in Cartan--Vranceanu $(2n+1)$-dimensional spaces JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 59 EP - 65 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a4/ LA - en ID - BASM_2007_1_a4 ER -
Dorel Fetcu. Biharmonic curves in Cartan--Vranceanu $(2n+1)$-dimensional spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 59-65. https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a4/
[1] Caddeo R., Oniciuc C., Piu P., Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group, , 2003 E-version, arXiv: math.DG 0311221 v1 | MR
[2] Caddeo R., Montaldo S., Oniciuc C., Piu P., The clasification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces, , 2005 E-version, arXiv: math.DG 0510435 v1 | MR
[3] Cho J. T., Inoguchi J., Lee J.-E., Biharmonic curves in 3-dimensional Sasakian space form, Preprint, 2004
[4] Eells J., Lemaire L., “Selected topics in harmonic maps”, Am. Math. Soc. Conf. Board Math. Sci., 50, 1983, 83 | MR
[5] Fetcu D., “Biharmonic curves in the generalized Heisenberg group”, Beiträge Algebra Geom., 46:2 (2005), 513–521 | MR | Zbl
[6] Jiang G. Y., “2-harmonic maps and their first and second variational formulas”, Chinese Ann. Math. Ser. A7, 4 (1986), 389–402 | MR
[7] Montaldo S., Oniciuc C., A short survey on biharmonic maps between riemannian manifolds, , 2005 E-version, arXiv: math.DG/0510636 v1 | MR
[8] Oniciuc C., Tangency and harmonicity properties, E-version, Geometry Balkan Press, 2003, p. 87. (in Roumanian) | MR
[9] Urakawa H., Calculus of Variation and Harmonic Maps, Translations of Mathematical Monographs, 132, American Mathematical Society, Providence, Rhode Island, 1993 | MR
[10] Vranceanu G., Leçons de géométrie différentielle, I, Ed. Acad. Rep. Pop. Roum., Bucharest, 1957 | MR