Power sets of n-ary quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of latin squares and in the binary quasigroup theory the notion of a latin power set (a quasigroup power set) is known. These sets have a good property, and namely, they are orthogonal sets. Such sets were studied and methods of their construction were suggested in different articles (see, for example, [1–5]). In this article we introduce (k)-powers of a k-invertible n-ary operation (with respect to the k-multiplication of n-ary operations) and (k)-power sets of n-ary quasigroups, n2, 1kn, prove pairwise orthogonality of such sets and consider distinct posibilities of their construction with the help of binary groups, in particular, using n – T-quasigroups and n-ary groups.
@article{BASM_2007_1_a2,
     author = {G. Belyavskaya},
     title = {Power sets of $n$-ary quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {37--45},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a2/}
}
TY  - JOUR
AU  - G. Belyavskaya
TI  - Power sets of $n$-ary quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 37
EP  - 45
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a2/
LA  - en
ID  - BASM_2007_1_a2
ER  - 
%0 Journal Article
%A G. Belyavskaya
%T Power sets of $n$-ary quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 37-45
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a2/
%G en
%F BASM_2007_1_a2
G. Belyavskaya. Power sets of $n$-ary quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 37-45. https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a2/

[1] Norton D. A., “Groups of orthogonal row-latin squares”, Pacific J. Math., 2 (1952), 335–341 | MR | Zbl

[2] Denes J., “What is there a latin power set?”, Amer. Math. Monthly, 104 (1997), 563–565 | DOI | MR

[3] Denes J., Mullen G. L., Suchower S. J., “A note on power sets of latin squares”, J. Comb. Math. Combin. Computing, 16 (1994), 27–31 | MR | Zbl

[4] Denes J., Owens P. J., “Some new latin power sets not based on groups”, J. Comb. Theory, Ser. A, 85 (1999), 69–82 | DOI | MR | Zbl

[5] Belyavskaya G. B., “Quasigroup power sets and cyclic $S$-systems”, Quasigroups and related systems, 9 (2002), 1–17 | MR | Zbl

[6] Belyavskaya G. B., Cheban A. M., “$S$-systems of an arbitrary index, II”, Mat. Issled., 1972, no. 7, 3–13 (in Russian) | MR | Zbl

[7] Denes J., Keedwell A. D., Latin Squares and Their Applications, Academiai Kiado, Budapest, 1974 | MR

[8] Denes J., Petroczki P., A digital encrypting communication system, Hungarian Patent No 201437A, 1990

[9] Belousov V. D., $n$-Ary quasigroups, Shtiintsa, Kishinev, 1972 (in Russian) | MR

[10] Yakubov T., “On $(2,n)$-semigroup of $n$-ary operations”, Izvestiya AN MSSR., Ser. fiz.-teh. i mat. nauk, 1974, no. 1, 29–46 (in Russian) | MR | Zbl

[11] Laywine C. F., Mullen G. L., Whittle G., “$D$-Dimensional hypercubes and the Euler and MacNeish conjectures”, Monatsh. Math., 111 (1995), 223–238 | DOI | MR

[12] Belyavskaya G., Mullen Gary L., “Orthogonal hypercubes and $n$-ary operations”, Quasigroups and related systems, 13 (2005), 73–86 | MR | Zbl

[13] Belyavskaya G., “Pairwise orthogonality of $n$-ary operations”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2005, no. 3(49), 5–18 | MR | Zbl

[14] Kostrikin A. I., Introduction in algebra, Nauka, Moscow, 1977 | MR | Zbl

[15] Kishen K., “On the construction of latin and hyper-graceo-latin cubes and hypercubes”, J. Ind. Soc. Agric. Statist., 2 (1950), 20–48 | MR

[16] Syrbu P. N., “On congruences of $n$-ary $T$-quasigroups”, Quasigroups and related systems, 6 (1999), 71–80 | MR | Zbl