Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2007_1_a1, author = {E. Naidenova and M. N. Popa and V. Orlov}, title = {Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {25--36}, publisher = {mathdoc}, number = {1}, year = {2007}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/} }
TY - JOUR AU - E. Naidenova AU - M. N. Popa AU - V. Orlov TI - Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 25 EP - 36 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/ LA - en ID - BASM_2007_1_a1 ER -
%0 Journal Article %A E. Naidenova %A M. N. Popa %A V. Orlov %T Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2007 %P 25-36 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/ %G en %F BASM_2007_1_a1
E. Naidenova; M. N. Popa; V. Orlov. Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 25-36. https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/
[1] Popa M., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl
[2] Macari P., Popa M., Vulpe N., “Integer algebraic basis of center-affne invariants for the differential system with homogeneities of the fourth order in right-hand sides”, Buletinul A.S.M., Matematica, 1996, no. 1(20), 48–55 (in Russian)
[3] Gurevici G., Foundations of the algebraic invariant's theory, GITTL, Moscow, 1948 (in Russian)
[4] Boularas D., Calin Iu., Timochouk L., Vulpe N., $T$-comitants of quadratic systems: a study via the translation invariants, Report 96-90, Delft University of Technology, Delft, 1996
[5] Sibirsky K. S., Introduction to algebraic theory of invariants of differential equations, Ştiinţa, Chişinău, 1982 (in Russian); 1988 (in English) | Zbl