Classification of GL(2,R)-orbi's dimensions for the differential equations' system with homogeneities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 25-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Center-affine invariant conditions for GL(2,R)-orbit's dimensions are defined for two-dimensional autonomous system of differential polynomial equations with homogeneities of the 4th order.
@article{BASM_2007_1_a1,
     author = {E. Naidenova and M. N. Popa and V. Orlov},
     title = {Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {25--36},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/}
}
TY  - JOUR
AU  - E. Naidenova
AU  - M. N. Popa
AU  - V. Orlov
TI  - Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 25
EP  - 36
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/
LA  - en
ID  - BASM_2007_1_a1
ER  - 
%0 Journal Article
%A E. Naidenova
%A M. N. Popa
%A V. Orlov
%T Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 25-36
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/
%G en
%F BASM_2007_1_a1
E. Naidenova; M. N. Popa; V. Orlov. Classification of $GL(2,\mathbb R)$-orbi's dimensions for the differential equations' system with homogeneities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 25-36. https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a1/

[1] Popa M., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl

[2] Macari P., Popa M., Vulpe N., “Integer algebraic basis of center-affne invariants for the differential system with homogeneities of the fourth order in right-hand sides”, Buletinul A.S.M., Matematica, 1996, no. 1(20), 48–55 (in Russian)

[3] Gurevici G., Foundations of the algebraic invariant's theory, GITTL, Moscow, 1948 (in Russian)

[4] Boularas D., Calin Iu., Timochouk L., Vulpe N., $T$-comitants of quadratic systems: a study via the translation invariants, Report 96-90, Delft University of Technology, Delft, 1996

[5] Sibirsky K. S., Introduction to algebraic theory of invariants of differential equations, Ştiinţa, Chişinău, 1982 (in Russian); 1988 (in English) | Zbl