Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2007_1_a0, author = {Ion Grama and Vladimir Spokoiny}, title = {Pareto approximation of the tail by local exponential modeling}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--24}, publisher = {mathdoc}, number = {1}, year = {2007}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a0/} }
TY - JOUR AU - Ion Grama AU - Vladimir Spokoiny TI - Pareto approximation of the tail by local exponential modeling JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 3 EP - 24 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a0/ LA - en ID - BASM_2007_1_a0 ER -
Ion Grama; Vladimir Spokoiny. Pareto approximation of the tail by local exponential modeling. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 3-24. https://geodesic-test.mathdoc.fr/item/BASM_2007_1_a0/
[1] Barron A., Birgé L., Massart P., “Risk bounds for model selection via penalization”, Probability Theory and Related Fields, 113 (1999), 301–413 | DOI | MR | Zbl
[2] Beirlant J., Teugels J., Vinysaker P., Practical analysis of extreme values, Leuven University Press, 1996 | Zbl
[3] Beirlant J., Dierskx G., Goegebeur Y., Matthys G., “Tail index estimation and an exponential regression model”, Extremes, 2:2 (1999), 177–200 | DOI | MR | Zbl
[4] Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[5] Danielsson J., de Haan L., Peng L., Vries, “Using a bootstrap method to choose the sample fraction in tail index estimation”, Journal of Multivariate Analysis, 76 (2001), 226–248 | DOI | MR | Zbl
[6] Deheuvels J., Haeusler E., Masson D., “Almost sure convergence of the Hill estimator”, Mathematical Proceedings of the Cambridge Philosophical society, 104 (1988), 371–384 | DOI | MR
[7] Drees H., “Minimax risk bounds in extreme value theory”, Ann. Statist., 29 (2001), 266–294 | DOI | MR | Zbl
[8] Drees H., Kaufman E., “Selecting the optimal sample fraction in univariate extreme value estimation”, Stoch. Processes Appl., 75 (1998), 149–172 | DOI | MR | Zbl
[9] Embrechts P., Klüppelberg K., Mikosch T., Modelling extremal events, Springer, 1997 | MR | Zbl
[10] de Haan L., Resnik S. I., “A simple asymptotic estimate for the index of a stable distribution”, J. Roy. Statist. Soc., Ser. B, 42 (1980), 83–87 | MR | Zbl
[11] Hall P., “On some simple estimates of an exponent of regular variation”, J. Roy. Statist. Soc., Ser. B, 44 (1982), 37–42 | MR | Zbl
[12] Hall P., Welsh A. H., “Adaptive estimates of regular variation”, Ann. Statist., 13 (1985), 331–341 | DOI | MR | Zbl
[13] Hill B. M., “A simple general approach to inference about the tail of a distribution”, Ann. Statist., 3 (1975), 1163–1174 | DOI | MR | Zbl
[14] Mason D., “Laws of large numbers for sums of extreme values”, Ann. Probab., 10 (1982), 754–764 | DOI | MR | Zbl
[15] Pickands J., III, “Statistical inference using extreme order statistics”, Ann. Statist., 3 (1975), 119–131 | DOI | MR | Zbl
[16] Picard D., Tribouley K., “Evolutionary Pareto distributions”, Ann. I. H. Poincaré - PR, 38 (2002), 1009–1022 | DOI | MR
[17] Reiss R.-D., Approximate distributions of order statistics: with applications to nonparametric statistics, Springer, 1989 | MR
[18] Resnik S., Starica C., “Smoothing the Hill estimator”, Adv. in Appl. Probab., 29 (1997), 271–293 | DOI | MR
[19] Resnik S., Starica C., “Tail index estimation for dependent data”, Ann. Appl. Probab., 8 (1998), 1156–1183 | DOI | MR
[20] Resnik S. I., “Heavy tail modelling and teletraffic data”, Ann. Statist., 25 (1997), 1805–1869 | DOI | MR
[21] Seneta E., Regularly varying functions, Lecture Notes in Mathematics, 508, Springer, 1976 | MR | Zbl
[22] Spokoiny V., “Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice”, Ann. Statist., 26:4 (1998), 1356–1378 | DOI | MR | Zbl