Natural classes and torsion free classes in categories of modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 101-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relation between natural classes and torsion free classes of modules is studied. The mapping ϕ:R-nat \EuScriptP between corresponding lattices is defined and some properties of ϕ are shown, in particular, the compatibility of ϕ with operations of unions in lattices.
@article{BASM_2006_3_a9,
     author = {A. I. Kashu},
     title = {Natural classes and torsion free classes in categories of modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {101--108},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a9/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Natural classes and torsion free classes in categories of modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 101
EP  - 108
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a9/
LA  - en
ID  - BASM_2006_3_a9
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Natural classes and torsion free classes in categories of modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 101-108
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a9/
%G en
%F BASM_2006_3_a9
A. I. Kashu. Natural classes and torsion free classes in categories of modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 101-108. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a9/

[1] Dauns J., “Module types”, Rocky Mountain J. of Math., 27:2 (1997), 503–557 | DOI | MR | Zbl

[2] Dauns J., “Lattices of classes of modules”, Commun. in Algebra, 27:9 (1999), 4363–4387 | DOI | MR | Zbl

[3] Zhou Y., “The lattice of natural classes of modules”, Commun. in Algebra, 24:5 (1996), 1637–1648 | DOI | MR | Zbl

[4] Garcia A. A., Rincon H., Montes J. R., “On the lattices of natural and conatural classes in $R$-Mod”, Commun. in Algebra, 29:2 (2001), 541–556 | DOI | MR | Zbl

[5] Stenström B., Rings of quotients, Springer Verlag, Berlin, 1975 | MR | Zbl

[6] Bican L., Kepka P., Nemec P., Rings, modules and preradicals, Marcell Dekker, New York, 1982 | MR | Zbl

[7] Golan J. S., Torsion theories, Longman Sci. Techn., New York, 1986 | MR | Zbl

[8] Kashu A. I., Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (in Russian) | MR

[9] Kashu A. I., “On natural classes of modules”, Bul. A.Ş.R.M., Matematica, 2004, no. 2(45), 95–101 | MR | Zbl

[10] Kashu A. I., “On the lattice of closed classes of modules”, Bul. A.Ş.R.M., Matematica, 2005, no. (48), 43–50 | MR