On topological torsion~LCA groups with commutative ring of continuous endomorphisms
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we determine for some classes S of topological torsion LCA (locally compact abelian) groups the structure of those groups in S which have a commutative ring of continuous endomorphisms.
@article{BASM_2006_3_a8,
     author = {Valeriu Popa},
     title = {On topological {torsion~LCA} groups with commutative ring of continuous endomorphisms},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {87--100},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a8/}
}
TY  - JOUR
AU  - Valeriu Popa
TI  - On topological torsion~LCA groups with commutative ring of continuous endomorphisms
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 87
EP  - 100
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a8/
LA  - en
ID  - BASM_2006_3_a8
ER  - 
%0 Journal Article
%A Valeriu Popa
%T On topological torsion~LCA groups with commutative ring of continuous endomorphisms
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 87-100
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a8/
%G en
%F BASM_2006_3_a8
Valeriu Popa. On topological torsion~LCA groups with commutative ring of continuous endomorphisms. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 87-100. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a8/

[1] Armacost D. L., The structure of locally compact abelian groups, Pure and Applied Mathematics Series, 68, Marcel Dekker, New York, 1981 | MR | Zbl

[2] Bourbaki N., Topologie generale. Éléments de mathematique, Chapter 1–2, Nauka, Moscow, 1968 | Zbl

[3] Bourbaki N., Topologie generale. Éléments de mathematique, Chapter 3–8, Nauka, Moscow, 1969 | Zbl

[4] Braconnier J., “Sur les groupes topologiques localement compact”, J. Math. Pures Apl., 27:9 (1948), 1–85 | MR | Zbl

[5] Dikranjan D., Prodanov I., Stoyanov L., Topological groups, Pure and Applied Mathematics Series, 130, Marcel Dekker, New York–Basel, 1990 | MR | Zbl

[6] Fuchs L., Abelian groups, Publishing House of the Hungarian Academy of Science, Budapest, 1958 | MR

[7] Fuchs L., Infinite abelian groups, Vol. 1, Academic Press, New York–London, 1970 | MR | Zbl

[8] Hewitt E., Ross K., Abstract Harmonic Analysis, Vol. 1, Nauka, Moscow, 1975 | MR

[9] Van Leeuwen L. C. A., “Remarks on endomorphism rings of torsion-free abelian groups”, Acta Scient. Math., 32:3–4 (1971), 309–324 | MR

[10] Popa V., “Units, idempotents and nilpotents of an endomorphism ring, II”, Bul. Acad. Şti. R. Moldova, Matematica, 1997, no. 1(23), 93–105 | MR

[11] Popa V., “On LCA groups with compact rings of continuous endomorphisms”, Bul. Acad. Şti. R. Moldova, Matematica, 2000, no. 1(32), 17–32 | MR

[12] Robertson L. C., Transfinite torsion, $p$-constituents, and splitting in locally compact abelian groups, 1968, unpublished

[13] Robertson L. C., “Connectivity, divisivility, and torsion”, Trans. Amer. Math. Soc., 128 (1967), 482–505 | DOI | MR | Zbl

[14] Szele T., Szendrei J., “On abelian groups with commutative endomorphism ring”, Acta Math. Acad. Sci. Hung., 2 (1951), 309–324 | DOI | MR | Zbl