A~Linear Parametrical Programming Approach for Studying and Solving Bilinear Programming Problem
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 73-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach for studying and solving a bilinear programming problem, based on linear parametrical programming, is proposed. Using duality principle for the considered problem we show that it can be transformed into a problem of determining the compatibility of a system of linear inequalities with a right-hand member that depends on parameters, admissible values of which are defined by another system of linear inequalities. Some properties of this auxiliary problem are obtained and a conical algorithm for its solving is proposed. We show that this algorithm can be used for finding the exact solution of bilinear programming problem as well as its approximate solution.
@article{BASM_2006_3_a7,
     author = {Dmitrii Lozovanu and Maria Fonoberova},
     title = {A~Linear {Parametrical} {Programming} {Approach} for {Studying} and {Solving} {Bilinear} {Programming} {Problem}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {73--86},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a7/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
AU  - Maria Fonoberova
TI  - A~Linear Parametrical Programming Approach for Studying and Solving Bilinear Programming Problem
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 73
EP  - 86
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a7/
LA  - en
ID  - BASM_2006_3_a7
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%A Maria Fonoberova
%T A~Linear Parametrical Programming Approach for Studying and Solving Bilinear Programming Problem
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 73-86
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a7/
%G en
%F BASM_2006_3_a7
Dmitrii Lozovanu; Maria Fonoberova. A~Linear Parametrical Programming Approach for Studying and Solving Bilinear Programming Problem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 73-86. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a7/

[1] Altman M., “Bilinear Programming”, Bul. Acad. Polan. Sci., Ser. Sci. Math. Astron. et Phis., 1968, no. 16(9), 741–746 | MR | Zbl

[2] Chernicov S. N., Linear Inequalities, Nauka, Moscow, 1968 | MR

[3] Horst R., Tuy H., Global Optimization. Deterministic Approaches, Springer Verlag, Berlin, 1993 | MR

[4] Khachian L. G., “Polynomial time algorithm in linear programming”, USSR, Computational Mathematics and Mathematical Physics, 20 (1980), 51–58 | DOI

[5] Khachian L. G., “On exact solution of the system of linear inequalities and linear programming problem”, USSR, Computational Mathematics and Mathematical Physics, 22 (1982), 999–1002 | MR

[6] Lozovanu D., “Duality Principle for Systems of Linear Inequalities with a Right-Hand Member that Depends on Parameters”, Izv. AN SSSR, Ser. Techn. Cyb., 6 (1987), 3–13 (in Russian)

[7] Lozovanu D., Extremal-Combinatorial Problems and Algorithms for their Solving, Stiintsa, Chisinau, 1991 (in Russian)

[8] Lozovanu D., “Parametrical approach for studying and solving bilinear programming problem”, Proceedings of the International Workshop on Global Optimization (San Jose, Almeria, Spain, September 18–22th, 2005), 165–170

[9] Pardalos P., Rosen J., “Methods for Global Concave Minimization. A bibliographical Survey”, SIAM Review, 1986, no. 28(3), 367–379 | DOI | MR | Zbl

[10] Tuy H., “Normal Conical Algorithm for Concave Minimization over Polytopes”, Math. Progr., 51 (1991), 229–245 | DOI | MR | Zbl