Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2006_3_a6, author = {Angela P\u{a}\c{s}canu}, title = {The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {65--72}, publisher = {mathdoc}, number = {3}, year = {2006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a6/} }
TY - JOUR AU - Angela Păşcanu TI - The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2006 SP - 65 EP - 72 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a6/ LA - en ID - BASM_2006_3_a6 ER -
%0 Journal Article %A Angela Păşcanu %T The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2006 %P 65-72 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a6/ %G en %F BASM_2006_3_a6
Angela Păşcanu. The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 65-72. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a6/
[1] Academic Press, 1982 | MR | Zbl
[2] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chişinău, 2001 (in Russian) | Zbl
[3] Braicov A. V., Popa M. N., “The $GL(2,\mathbb R)$-orbits of differential system with homogeneites second order”, The Internationals Conference “Differential and Integral Equations” (Odessa, September 12–14, 2000), 31
[4] Boularas D., Braicov A. V., Popa M. N., “Invariant conditions for dimensions of $GL(2,\mathbb R)$-orbits for quadratic differential system”, Bul. Acad. Sci. Rep. Moldova, Math., 2000, no. 2(33), 31–38 | MR | Zbl
[5] Boularas D., Braicov A. V., Popa M. N., “The $GL(2,\mathbb R)$-orbits of differential system with cubic homogeneites”, Bul. Acad. Sci. Rep. Moldova, Math., 2001, no. 1(35), 81–82 | MR | Zbl
[6] Naidenova E. V., Popa M. N., “On a classification of Orbits for Cubic Differential Systems”, Abstracts of “16th International Symposium on Nonlinear Acoustics”, section “Modern group analysis” (MOGRAN-9) (August 19–23, 2002, Moscow), 274
[7] Naidenova E. V., Popa M. N., “$GL(2,\mathbb R)$-orbits for one cubic system”, Abstracts of “11th Conference on Applied and Industrial Mathematics” (May 29–31, 2003, Oradea, Romania), 57
[8] Starus E. V., “Invariant conditions for the dimensions of the $GL(2,\mathbb R)$-orbits for one differential cubic system”, Bul. Acad. Sci. Rep. Moldova, Math., 2003, no. 3(43), 58–70 | MR
[9] Starus E. V., “The classification of the $GL(2,\mathbb R$-orbit's dimensions for the system $s(0,2)$ and a factorsystem $s(0,1,2)/GL(2,\mathbb R)$”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 1(44), 120–123 | MR | Zbl
[10] Păşcanu A., Şubă A., “$GL(2,\mathbb R)$-orbits of the polynomial systems of differential equation”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 3(46), 25–40