Linear stability bounds in a~convection problem for variable gravity field
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 51-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem governing the convection-conduction in a horizontal layer bounded by rigid walls of a fluid heated from below for a linearly decreasing across the layer gravity field is reformulated as a variational problem. Stability bounds from the case of classical convection [1] and the case of convection in a linearly decreasing across the layer gravity field are compared. The new criterion, which yields good stability bounds for the stability limit, is shown by the numerical evaluations obtained in [2–4].
@article{BASM_2006_3_a4,
     author = {Ioana Dragomirescu and Adelina Georgescu},
     title = {Linear stability bounds in a~convection problem for variable gravity field},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--56},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a4/}
}
TY  - JOUR
AU  - Ioana Dragomirescu
AU  - Adelina Georgescu
TI  - Linear stability bounds in a~convection problem for variable gravity field
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 51
EP  - 56
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a4/
LA  - en
ID  - BASM_2006_3_a4
ER  - 
%0 Journal Article
%A Ioana Dragomirescu
%A Adelina Georgescu
%T Linear stability bounds in a~convection problem for variable gravity field
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 51-56
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a4/
%G en
%F BASM_2006_3_a4
Ioana Dragomirescu; Adelina Georgescu. Linear stability bounds in a~convection problem for variable gravity field. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 51-56. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a4/

[1] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon, Oxford, 1961 | MR | Zbl

[2] Dragomirescu I., “Bounds for the onset of a convection in a variable gravity field by using isoperimetric inequalities”, International Conference “Several Aspects of Biology, Chemistry, Informatics, Mathematics and Physics” (Oradea, November 11–13, 2005)

[3] Dragomirescu I., “Linear stability for a convection problem for a variable gravity field”, Proceedings of APLIMAT 2006, Bratislava, 231–236

[4] Dragomirescu I., “Approximate neutral surface of a convection problem for variable gravity field”, Rend. Sem. Mat. Univ. Pol. Torino, 64 (2006) | MR | Zbl

[5] Herron I., “On the principle of exchange of stabilities in Rayleigh-Bénard convection”, SIAM J. Appl. Math., 61:4 (2000), 1362–1368 | DOI | MR | Zbl

[6] Joseph D. D., “Eigenvalue bounds for the Orr-Sommerfeld equation”, J. Fluid Mech., 33:3 (1968), 617–621 | DOI | MR | Zbl

[7] Straughan B., The energy method, stability, and nonlinear convection, 2nd ed., Springer, Berlin, 2003 | MR