Nearly simple elementary divisor domains
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 121-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a nearly simple Bezout domain is an elementary divisor ring if and only if it is 2-simple.
@article{BASM_2006_3_a12,
     author = {B. V. Zabavsky and T. N. Kysil'},
     title = {Nearly simple elementary divisor domains},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {121--123},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a12/}
}
TY  - JOUR
AU  - B. V. Zabavsky
AU  - T. N. Kysil'
TI  - Nearly simple elementary divisor domains
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 121
EP  - 123
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a12/
LA  - en
ID  - BASM_2006_3_a12
ER  - 
%0 Journal Article
%A B. V. Zabavsky
%A T. N. Kysil'
%T Nearly simple elementary divisor domains
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 121-123
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a12/
%G en
%F BASM_2006_3_a12
B. V. Zabavsky; T. N. Kysil'. Nearly simple elementary divisor domains. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 121-123. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a12/

[1] Kaplansky I., “Elementary divisors and modules”, Trans. Amer. Math. Soc., 66 (1949), 464–491 | DOI | MR | Zbl

[2] Zabavsky B. V., “Simple elementary diviser rings”, Matematicni studii, 22:2 (2004), 129–133 (in Russian) | MR

[3] Brungs H. H., Schöder M., “Prime segments of skew fields”, Canad. J. Math., 47 (1995), 1148–1167 | MR

[4] Brungs H. H., Törner G., “Extensions of chain rings”, Math. Zeit., 185 (1984), 93–104 | DOI | MR | Zbl

[5] Mathiak K., Valuations of skew fields and projective Hjelmslev spaces, Lectures Notes in Math., 1175, Springer-Verlag, 1986 | MR | Zbl

[6] Dubrovin N. I., “Chain domains”, Moscow Univ. Math. Bull., Ser. 1, 37 (1980), 51–54 | MR

[7] Brungs H. H., Dubrovin N. I., “A classification and examples of rank one chain domains”, Trans. Amer. Math. Soc., 355:7 (2003), 2733–2753 | DOI | MR | Zbl

[8] Cohn P. M., “On $n$-simple rings”, Alg. univers., 53 (2005), 301–305 | DOI | MR | Zbl