Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a finite cooperative game in the normal form with a parametric principle of optimality (the generalized concept of equilibrium). This principle is defined by the partition of the players into coalitions. In this situation, two extreme cases of this partition correspond to the lexicographically optimal situation and the Nash equilibrium situation, respectively. The analysis of stability for a set of generalized equilibrium situations under the perturbations of the coefficients of the linear payoff functions is performed. Upper and lower bounds of the stability radius in the l-metric are obtained. We show that the lower bound of the stability radius is accessible.
@article{BASM_2006_3_a1,
     author = {V. A. Emelichev and E. E. Gurevsky and A. A. Platonov},
     title = {Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {17--26},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - E. E. Gurevsky
AU  - A. A. Platonov
TI  - Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 17
EP  - 26
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/
LA  - en
ID  - BASM_2006_3_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A E. E. Gurevsky
%A A. A. Platonov
%T Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 17-26
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/
%G en
%F BASM_2006_3_a1
V. A. Emelichev; E. E. Gurevsky; A. A. Platonov. Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 17-26. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/

[1] Moulen H., Théorie des jeux pour l'économie et la politique, Harmann, Paris, 1979

[2] Petrosyan L. A., Zenkevich N. A., Semina E. A., Games theory, Vysshaya shkola, Moscow, 1998 (in Russian) | MR | Zbl

[3] Emelichev V. A., Bukhtoyarov S. E., “Stability of generally efficient situation in finite cooperative games with parametric optimality principle ("from Pareto to Nash")”, Computer Science Journal of Moldova, 11:3 (2003), 316–323 | MR | Zbl

[4] Bukhtoyarov S. E., Emelichev V. A., Stepanishina Yu. V., “Stability of discrete vector problems with the parametric principle of optimality”, Cybernetics and Systems Analysis, 39 (2003), 604–614 | DOI | MR | Zbl

[5] Emelichev V. A., Kuzmin K. G., “Finite cooperative games with a parametric concept of equilibrium under uncertainty conditions”, J. of Computer and Systems International, 45:2 (2006), 276–281 | DOI | MR

[6] Bukhtoyarov S. E., Emelichev V. A., “Measure of stability for a finite cooperative game with a parametric optimality principle (from Pareto to Nash)”, Comput. Math. and Mathem. Physics, 46:7 (2006), 1193–1199 | DOI | MR

[7] Podinovskiy V. V., Gavrilov V. M., Optimization on sequential applied criteria, Sovetskoe radio, Moskow, 1975 (in Russian)

[8] Chervak Yu., Unimprovable choice, Uzhgorod National University, Uzhgorod, 2002 (in Ukrainian)

[9] Nash J. F., “Non-cooperative games”, Ann. Math., 54:2 (1951), 286–295 | DOI | MR | Zbl

[10] Sotskov Yu., Leontev V., Gordeev E., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[11] Emelichev V., Girlich E., Nikulin Yu., Podkopaev D., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[12] Bukhtoyarov S. E., Kuzmin K. G., “On stability in game problems of finding Nash set”, Computer Science Journal of Moldova, 12:3 (2004), 381–388 | MR