Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2006_3_a1, author = {V. A. Emelichev and E. E. Gurevsky and A. A. Platonov}, title = {Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {17--26}, publisher = {mathdoc}, number = {3}, year = {2006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/} }
TY - JOUR AU - V. A. Emelichev AU - E. E. Gurevsky AU - A. A. Platonov TI - Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2006 SP - 17 EP - 26 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/ LA - en ID - BASM_2006_3_a1 ER -
%0 Journal Article %A V. A. Emelichev %A E. E. Gurevsky %A A. A. Platonov %T Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2006 %P 17-26 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/ %G en %F BASM_2006_3_a1
V. A. Emelichev; E. E. Gurevsky; A. A. Platonov. Measure of stability for a~finite cooperative game with a~generalized concept of equilibrium. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 17-26. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a1/
[1] Moulen H., Théorie des jeux pour l'économie et la politique, Harmann, Paris, 1979
[2] Petrosyan L. A., Zenkevich N. A., Semina E. A., Games theory, Vysshaya shkola, Moscow, 1998 (in Russian) | MR | Zbl
[3] Emelichev V. A., Bukhtoyarov S. E., “Stability of generally efficient situation in finite cooperative games with parametric optimality principle ("from Pareto to Nash")”, Computer Science Journal of Moldova, 11:3 (2003), 316–323 | MR | Zbl
[4] Bukhtoyarov S. E., Emelichev V. A., Stepanishina Yu. V., “Stability of discrete vector problems with the parametric principle of optimality”, Cybernetics and Systems Analysis, 39 (2003), 604–614 | DOI | MR | Zbl
[5] Emelichev V. A., Kuzmin K. G., “Finite cooperative games with a parametric concept of equilibrium under uncertainty conditions”, J. of Computer and Systems International, 45:2 (2006), 276–281 | DOI | MR
[6] Bukhtoyarov S. E., Emelichev V. A., “Measure of stability for a finite cooperative game with a parametric optimality principle (from Pareto to Nash)”, Comput. Math. and Mathem. Physics, 46:7 (2006), 1193–1199 | DOI | MR
[7] Podinovskiy V. V., Gavrilov V. M., Optimization on sequential applied criteria, Sovetskoe radio, Moskow, 1975 (in Russian)
[8] Chervak Yu., Unimprovable choice, Uzhgorod National University, Uzhgorod, 2002 (in Ukrainian)
[9] Nash J. F., “Non-cooperative games”, Ann. Math., 54:2 (1951), 286–295 | DOI | MR | Zbl
[10] Sotskov Yu., Leontev V., Gordeev E., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl
[11] Emelichev V., Girlich E., Nikulin Yu., Podkopaev D., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[12] Bukhtoyarov S. E., Kuzmin K. G., “On stability in game problems of finding Nash set”, Computer Science Journal of Moldova, 12:3 (2004), 381–388 | MR