Lie algebras of operators and invariant GL(2,R)-integrals for Darboux type differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article two-dimensional autonomous Darboux type differential systems with nonlinearities of the ith(i=2,7) degree with respect to the phase variables are considered. For every such system the admitted Lie algebra is constructed. With the aid of these algebras particular invariant GL(2,R)-integrals as well as first integrals of considered systems are constructed. These integrals represent the algebraic curves of the (i1)th(i=2,7) degree. It is showed that the Darboux type systems with nonlinearities of the 2nd, the 4th and the 6th degree with respect to the phase variables do not have limit cycles.
@article{BASM_2006_3_a0,
     author = {O. V. Diaconescu and M. N. Popa},
     title = {Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for {Darboux} type differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--16},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a0/}
}
TY  - JOUR
AU  - O. V. Diaconescu
AU  - M. N. Popa
TI  - Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 3
EP  - 16
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a0/
LA  - en
ID  - BASM_2006_3_a0
ER  - 
%0 Journal Article
%A O. V. Diaconescu
%A M. N. Popa
%T Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 3-16
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a0/
%G en
%F BASM_2006_3_a0
O. V. Diaconescu; M. N. Popa. Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 3-16. https://geodesic-test.mathdoc.fr/item/BASM_2006_3_a0/

[1] Sibirsky K. S., Introduction to algebraic theory of invariants of differential equations, Stiintsa, Kishinev, 1982 (in Russian); Manchester University Press, Manchester, 1988 | Zbl

[2] Lucashevich N. A., “The integral curves of Darboux equations”, Differential equations, 2(5) (1966), 628–633 (in Russian) | MR

[3] Vulpe N. I., Costas S. I., The center-affine invariant conditions of topological distinctions of the Darboux differential systems with cubic non-linearities, Preprint, Chisinau, 1989 (in Russian)

[4] Dedok N. N., “On the singular points of differential equation Darboux”, Differential Equations, 8:10 (1972), 1880–1881 (in Russian) | MR | Zbl

[5] Amelkin V. V., Lucashevich N. A., Sadovski A. P., Nonlinear variation in systems of the second order, Minsk, 1982 (in Russian)

[6] Gorbuzov V. N., Samodurov A. A., Darboux equation and its analogues: Optional course manual, Grodno, 1985 (in Russian)

[7] Vulpe N. I., Costas S. I., “The center-affine invariant conditions for existence of the limit cycle for one Darboux system”, Mat. issled., 1987, no. 92, 38–42 (in Russian) | MR | Zbl

[8] Popa M. N., Algebraic methods for differential systems, Seria Matematica Aplicata si Industriala, 15, Flower Power Edit., Pitesti Univers., Romania, 2004 (in Romanian) | MR | Zbl

[9] Chebanu V. M., “Minimal polynomial basis of comitants of cubic differential systems”, Differential equations, 21:3 (1985), 541–543 (in Russian) | Zbl

[10] Darboux G., “Memoire sur les equations differentielles algebriques du premier order et du premier degree”, Bull. Sciences Math., Ser. (2), 2(1) (1878), 60–96 ; 123–144 ; 151–200 | Zbl