Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2006_2_a8, author = {Gheorghe Tigan}, title = {On a~family of {Hamiltonian} cubic planar differential systems}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {75--86}, publisher = {mathdoc}, number = {2}, year = {2006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a8/} }
TY - JOUR AU - Gheorghe Tigan TI - On a~family of Hamiltonian cubic planar differential systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2006 SP - 75 EP - 86 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a8/ LA - en ID - BASM_2006_2_a8 ER -
Gheorghe Tigan. On a~family of Hamiltonian cubic planar differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 75-86. https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a8/
[1] Bondar Y. L., Sadovskii A. P., “Variety of the center and limit cycles of a cubic sistem, which is reduced to Lienard form”, Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2004, no. 3(46), 71–90 | MR | Zbl
[2] Tigan G., “Thirteen limit cycles for a class of Hamiltonian systems under seven-order perturbed terms”, Chaos, Soliton and Fractals, 31 (2007), 480–488 | DOI | MR | Zbl
[3] Tigan G., “Existence and distribution of limit cycles in a Hamiltonian system”, Applied Mathematics E-Notes, 6 (2006), 176–185 | MR | Zbl
[4] Tigan G., Detecting the limit cycles for a class of Hamiltonian systems under thirteen-order perturbed terms, http://arxiv.org/abs/math/0512342
[5] Blows T. R., Perko L. M., “Bifurcation of limit cycles from centers and separatrix cycles of planar analytic systems”, SIAM Rev., 36 (1994), 341–376 | DOI | MR | Zbl
[6] Chows S. N., Li C., Wang D., Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, 1994 | MR
[7] Andronov A. A., Theory of bifurcations of dynamical systems on a plane, Israel program for scientific translations, Jerusalem, 1971
[8] Giacomini H., Llibre J., Viano M., “On the shape of limit cycles that bifurcate from Hamiltonian centers”, Nonlinear Anal. Theory Methods Appl., 41 (1997), 523–537 | DOI | MR
[9] Yanqian Y., Theory of Limit Cycles, Translations of Math. Monographs, 66, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl
[10] Li C. F., Li J. B., “Distribution of limit cycles for planar cubic Hamiltonian systems”, Acta Math. Sinica, 28 (1985), 509–521 | MR | Zbl
[11] Li J., Huang Q., “Bifurcation of limit cycles forming compound eyes in the cubic system”, Chinese Ann. Math., 1987, no. 8B(4), 391–403 | MR | Zbl
[12] Viano M., Llibre J., Giacomini H., “Arbitrary order bifurcations for perturbed Hamiltonian planar systems via the reciprocal of an integrating factor”, Nonlinear Analysis, 48 (2002), 117–136 | DOI | MR | Zbl
[13] Li J. B., Liu Z. R., “On the connection between two parts of Hilbert's 16-th problem and equvariant bifurcation problem”, Ann. Diff. Eqs., 1998, no. 14(2), 224–235 | MR | Zbl
[14] Giacomini H., Llibre J., Viano M., “On the nonexistence, existence and uniqueness of limit cycles”, Nonlinearity, 9 (1996), 501–516 | DOI | MR | Zbl
[15] Hong Z., Chen W., Tonghua Z., “Perturbation from a cubic Hamiltonian with three figure eight-loops”, Chaos, Solitons and Fractals, 22 (2004), 61–74 | DOI | MR | Zbl
[16] Li J. B., Liu Z. R., “Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system”, Publ. Math., 35 (1991), 487–506 | MR | Zbl
[17] Cao H., Liu Z., Jing Z., “Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms”, Chaos, Solitons and Fractals, 11 (2000), 2293–2304 | DOI | MR | Zbl
[18] Tang M., Hong X., “Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term”, Chaos, Solitons and Fractals, 14 (2002), 1361–1369 | DOI | MR | Zbl
[19] Tigan G., “Eleven limit cycles in a Hamiltonian system”, Differential Geometry-Dynamical Systems Journal, 8 (2006), 268–277 | MR | Zbl
[20] Tigan G., Limit cycles in a perturbed Hamiltonian system, Preprint