On a~family of Hamiltonian cubic planar differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 75-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of planar perturbed Hamiltonian systems are studied in the present work in order to identify the limit cycles. The closed curves of the unperturbed associated Hamiltonian system are described. Using the Abelian integral method we find the detection functions. Numerical explorations are presented to illustrate the distribution of the limit cycles.
@article{BASM_2006_2_a8,
     author = {Gheorghe Tigan},
     title = {On a~family of {Hamiltonian} cubic planar differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {75--86},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a8/}
}
TY  - JOUR
AU  - Gheorghe Tigan
TI  - On a~family of Hamiltonian cubic planar differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 75
EP  - 86
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a8/
LA  - en
ID  - BASM_2006_2_a8
ER  - 
%0 Journal Article
%A Gheorghe Tigan
%T On a~family of Hamiltonian cubic planar differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 75-86
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a8/
%G en
%F BASM_2006_2_a8
Gheorghe Tigan. On a~family of Hamiltonian cubic planar differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 75-86. https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a8/

[1] Bondar Y. L., Sadovskii A. P., “Variety of the center and limit cycles of a cubic sistem, which is reduced to Lienard form”, Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2004, no. 3(46), 71–90 | MR | Zbl

[2] Tigan G., “Thirteen limit cycles for a class of Hamiltonian systems under seven-order perturbed terms”, Chaos, Soliton and Fractals, 31 (2007), 480–488 | DOI | MR | Zbl

[3] Tigan G., “Existence and distribution of limit cycles in a Hamiltonian system”, Applied Mathematics E-Notes, 6 (2006), 176–185 | MR | Zbl

[4] Tigan G., Detecting the limit cycles for a class of Hamiltonian systems under thirteen-order perturbed terms, http://arxiv.org/abs/math/0512342

[5] Blows T. R., Perko L. M., “Bifurcation of limit cycles from centers and separatrix cycles of planar analytic systems”, SIAM Rev., 36 (1994), 341–376 | DOI | MR | Zbl

[6] Chows S. N., Li C., Wang D., Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, 1994 | MR

[7] Andronov A. A., Theory of bifurcations of dynamical systems on a plane, Israel program for scientific translations, Jerusalem, 1971

[8] Giacomini H., Llibre J., Viano M., “On the shape of limit cycles that bifurcate from Hamiltonian centers”, Nonlinear Anal. Theory Methods Appl., 41 (1997), 523–537 | DOI | MR

[9] Yanqian Y., Theory of Limit Cycles, Translations of Math. Monographs, 66, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl

[10] Li C. F., Li J. B., “Distribution of limit cycles for planar cubic Hamiltonian systems”, Acta Math. Sinica, 28 (1985), 509–521 | MR | Zbl

[11] Li J., Huang Q., “Bifurcation of limit cycles forming compound eyes in the cubic system”, Chinese Ann. Math., 1987, no. 8B(4), 391–403 | MR | Zbl

[12] Viano M., Llibre J., Giacomini H., “Arbitrary order bifurcations for perturbed Hamiltonian planar systems via the reciprocal of an integrating factor”, Nonlinear Analysis, 48 (2002), 117–136 | DOI | MR | Zbl

[13] Li J. B., Liu Z. R., “On the connection between two parts of Hilbert's 16-th problem and equvariant bifurcation problem”, Ann. Diff. Eqs., 1998, no. 14(2), 224–235 | MR | Zbl

[14] Giacomini H., Llibre J., Viano M., “On the nonexistence, existence and uniqueness of limit cycles”, Nonlinearity, 9 (1996), 501–516 | DOI | MR | Zbl

[15] Hong Z., Chen W., Tonghua Z., “Perturbation from a cubic Hamiltonian with three figure eight-loops”, Chaos, Solitons and Fractals, 22 (2004), 61–74 | DOI | MR | Zbl

[16] Li J. B., Liu Z. R., “Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system”, Publ. Math., 35 (1991), 487–506 | MR | Zbl

[17] Cao H., Liu Z., Jing Z., “Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms”, Chaos, Solitons and Fractals, 11 (2000), 2293–2304 | DOI | MR | Zbl

[18] Tang M., Hong X., “Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term”, Chaos, Solitons and Fractals, 14 (2002), 1361–1369 | DOI | MR | Zbl

[19] Tigan G., “Eleven limit cycles in a Hamiltonian system”, Differential Geometry-Dynamical Systems Journal, 8 (2006), 268–277 | MR | Zbl

[20] Tigan G., Limit cycles in a perturbed Hamiltonian system, Preprint