On an algebraic method in the study of integral equations with shift
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is centred on the sdudy of algebra A generated by singular integral operators with shifts with continuous coefficients. We determine the set of maximal ideals of quotient algebra A^, A^=A/T, with respect to the ideal of compact operators. Prove that the bicompact of maximal ideals of A^ is isomorphic to the topological product (Γ×j)×(Γ×k), where j=±1 and k=±1. Necessary and sufficient condition are established for operators of A to be noetherian and to admit equivalent regularization in space Lp(Γ,ρ), regularizators for noetherian operators are constructed. The study is done in the space Lp(Γ,ρ) with weight ρ(t)=k=1n|ttk|βk and is based on the theory of Ghelfand [1] concerning Banach algebras.
@article{BASM_2006_2_a7,
     author = {Vasile Neaga},
     title = {On an algebraic method in the study of integral equations with shift},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {69--74},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a7/}
}
TY  - JOUR
AU  - Vasile Neaga
TI  - On an algebraic method in the study of integral equations with shift
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 69
EP  - 74
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a7/
LA  - en
ID  - BASM_2006_2_a7
ER  - 
%0 Journal Article
%A Vasile Neaga
%T On an algebraic method in the study of integral equations with shift
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 69-74
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a7/
%G en
%F BASM_2006_2_a7
Vasile Neaga. On an algebraic method in the study of integral equations with shift. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 69-74. https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a7/

[1] Gelfand I., Commutative normed rings, Chelsea, New York, 1964

[2] Gohberg I., “On an application of the theory of normed rings to singular integral equations”, Uspehi mat. nauk, 19:1 (1964), 71–124 (In Russian) | MR

[3] Gahov F., Boundary value problems, Nauka, Moskva, 1977 (In Russian) | MR

[4] Krupnik N., Banach algebras with symbol and singular integral operators, Birkhauser, Basel–Boston, 1987 | MR | Zbl

[5] Litvinchiuk G., Introduction to the Theory of Singular Integral Operators with Shift, Kluwer, 2001

[6] Neagu V., Banach algebras generated by singular integral operators, CEP USM, 2005