On the coproducts of cyclics in commutative modular and semisimple group rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study certain properties of the coproducts (= direct sums) of cyclic groups in commutative modular and semisimple group rings. Our results strengthen a statement due to T. Zh. Mollov (Pliska, Stud. Math. Bulgar., 1981) and also they may be interpreted as a natural continuation of a recent investigation of ours (Serdica Math. J., 2003).
@article{BASM_2006_2_a4,
     author = {Peter Danchev},
     title = {On the coproducts of cyclics in commutative modular and semisimple group rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {45--52},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a4/}
}
TY  - JOUR
AU  - Peter Danchev
TI  - On the coproducts of cyclics in commutative modular and semisimple group rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 45
EP  - 52
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a4/
LA  - en
ID  - BASM_2006_2_a4
ER  - 
%0 Journal Article
%A Peter Danchev
%T On the coproducts of cyclics in commutative modular and semisimple group rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 45-52
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a4/
%G en
%F BASM_2006_2_a4
Peter Danchev. On the coproducts of cyclics in commutative modular and semisimple group rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 45-52. https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a4/

[1] Berlinghoff W. P., Reid J. D., “Quasi-pure projective and injective torsion groups”, Proc. Amer. Math. Soc., 65:2 (1977), 189–193 | DOI | MR | Zbl

[2] Danchev P. V., “Isomorphism of commutative modular group algebras”, Serdica Math. J., 23:3–4 (1997), 211–224 | MR | Zbl

[3] Danchev P. V., “Sylow $p$-subgroups of modular abelian group rings”, Compt. rend. Acad. bulg. Sci., 54:2 (2001), 5–8 | MR

[4] Danchev P. V., “Sylow $p$-subgroups of abelian group rings”, Serdica Math. J., 29:1 (2003), 33–44 | MR | Zbl

[5] Danchev P. V., “Commutative group algebras of highly torsion-complete abelian $p$-groups”, Comment. Math. Univ. Carolinae, 44:4 (2003), 587–592 | MR | Zbl

[6] Danchev P. V., “Characteristic properties of large subgroups in primary abelian groups”, Proc. Indian Acad. Sci. Sect. A - Math. Sci., 114:3 (2004), 225–233 | DOI | MR | Zbl

[7] Danchev P. V., “Torsion completeness of Sylow $p$-groups in semisimple group rings”, Acta Math. Sinica, 20:5 (2004), 893–898 | DOI | MR | Zbl

[8] Danchev P. V., “Ulm-Kaplansky invariants of $S(KG)/G$”, Bull. Polish Acad. Sci. - Math., 53:3 (2005), 147–156 | DOI | MR | Zbl

[9] Danchev P. V., “Generalized Dieudonné criterion”, Acta Math. Univ. Comenianae, 74:1 (2005), 15–24 | MR | Zbl

[10] Danchev P. V., “Generalized Dieudonné and Honda criteria” (to appear)

[11] Diedonné J. A., “Sur les $p$-groupes abéliens infinis”, Portugal. Math., 11:1 (1952), 1–5 | MR

[12] Mollov T. Zh., “Ulm invariants of the Sylow $p$-subgroups of group algebras of abelian groups over a field with characteristic $p$”, Pliska Stud. Math. Bulgar., 2 (1981), 77–82 (in Russian) | MR | Zbl

[13] Mollov T. Zh., Invariants and unit groups of group algebras, Dissertation - Dr. of Math. Sci., Plovdiv University “Paissii Hilendarski”, Plovdiv, 1984 (in Bulgarian)

[14] Mollov T. Zh., “Sylow $p$-subgroups of the group of normed units of semisimple group algebras of uncountable abelian $p$-groups”, Pliska Stud. Math. Bulgar., 8 (1986), 34–46 (in Russian) | MR | Zbl

[15] Mollov T. Zh., “Unit groups of semisimple group algebras”, Pliska Stud. Math. Bulgar., 8 (1986), 54–64 (in Russian) | MR | Zbl

[16] Mollov T. Zh., Zbl. Math. 16025:(1035).

[17] Nunke R. J., “Purity and subfunctors of the identity”, Topics in Abelian Groups, Scott. Foresman, Chicago, 1963 | MR