The property of universality for some monoid algebras over non-commutative rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 102-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define on an arbitrary ring A a family of mappings (σx,y) subscripted with elements of a multiplicative monoid G. The assigned properties allow to call these mappings derivations of the ring A. A monoid algebra of G over A is constructed explicitly, and the universality property of it is shown.
@article{BASM_2006_2_a11,
     author = {Elena P. Cojuhari},
     title = {The property of universality for some monoid algebras over non-commutative rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {102--105},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a11/}
}
TY  - JOUR
AU  - Elena P. Cojuhari
TI  - The property of universality for some monoid algebras over non-commutative rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 102
EP  - 105
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a11/
LA  - en
ID  - BASM_2006_2_a11
ER  - 
%0 Journal Article
%A Elena P. Cojuhari
%T The property of universality for some monoid algebras over non-commutative rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 102-105
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a11/
%G en
%F BASM_2006_2_a11
Elena P. Cojuhari. The property of universality for some monoid algebras over non-commutative rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 102-105. https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a11/

[1] Lang S., Algebra, Addison Wesley, Reading, Massachusetts, 1970 | MR

[2] Bovdi A. A., “Crossed products of a semigroup and a ring”, Sibirsk. Mat. Zh., 4 (1963), 481–499 | MR | Zbl

[3] Passman D. S., Infinite crossed products, Academic Press, Boston, 1989 | MR | Zbl

[4] Bovdi A. A., Group rings, UMK VO, Kiev, 1988 (in Russian)

[5] Karpilovsky G., Commutative group algebras, New-York, 1983 | MR

[6] Cohn P. M., Free rings and their relations, Academic Press, London–New-York, 1971 | MR

[7] Smits T. H. M., “Skew polynomial rings”, Indag. Math., 30 (1968), 209–224 | MR

[8] Smits T. H. M., “The free product of a quadratic number field and semifield”, Indag. Math., 31 (1969), 145–159 | MR

[9] Ryabukhin Yu. M., “Quasi-regular algebras, modules, groups and varieties”, Buletinul A. S. R. M., Matematica, 1997, no. 1(23), 6–62 (in Russian) | MR

[10] Andrunakievich V. A., Ryabukhin Yu. M., Radicals of algebras and structure theory, Nauka, Moscow, 1979 (in Russian) | MR