On commutative Moufang loops with some restrictions for subgroups of its multiplication groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 95-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let M be the multiplication group of a commutative Moufang loop Q. In this paper it is proved that if all infinite abelian subgroups of M are normal in M, then Q is associative. If all infinite nonabelian subgroups of M are normal in M, then all nonassociative subloops of Q are normal in Q, all nonabelian subgroups of M are normal in M and the commutator subgroup M is a finite 3-group.
@article{BASM_2006_2_a10,
     author = {N. T. Lupashco},
     title = {On commutative {Moufang} loops with some restrictions for subgroups of its multiplication groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {95--101},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a10/}
}
TY  - JOUR
AU  - N. T. Lupashco
TI  - On commutative Moufang loops with some restrictions for subgroups of its multiplication groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 95
EP  - 101
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a10/
LA  - en
ID  - BASM_2006_2_a10
ER  - 
%0 Journal Article
%A N. T. Lupashco
%T On commutative Moufang loops with some restrictions for subgroups of its multiplication groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 95-101
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a10/
%G en
%F BASM_2006_2_a10
N. T. Lupashco. On commutative Moufang loops with some restrictions for subgroups of its multiplication groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 95-101. https://geodesic-test.mathdoc.fr/item/BASM_2006_2_a10/

[1] Chernikov S. N., The groups with given properties of the systems of subgroups, Nauka, Moskva, 1980 (In Russian) | MR

[2] Bruck R. H., A survey of binary systems, Springer Verlag, Berlin–Heidelberg, 1958 | MR | Zbl

[3] Sandu N. I., “Commutative Moufang loops with minimum condition for subloops, I”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2003, no. 3(43), 25–40 | MR

[4] Sandu N. I., “Commutative Moufang Loops with Finite Classes of Conjugate Subloops”, Mat. zametki, 73:2 (2003), 269–280 (In Russian) | MR | Zbl

[5] Sandu N. I., “Commutative Moufang Loops with Minimum Condition for Subloops, II”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2004, no. 2(45), 33–48 | MR | Zbl

[6] Gorchakov Iu. M., Groups with finite classes of conjugate elements, Nauka, Moskva, 1978 (in Russian) | MR | Zbl

[7] Neumann B. H., “Groups covered by permutable subsets”, J. London Math. Soc., 29 (1954), 236–248 | DOI | MR | Zbl

[8] Baer R., “Finitiness properties of groups”, Duke Math. J., 15 (1948), 1021–1032 | DOI | MR | Zbl