Unsteady flow of an Oldroyd-B fluid induced by a constantly accelerating plate
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 85-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the start-up flow of an Oldroyd-B fluid between two infinite parallel plates, one of them at rest and the other one being subject, after time zero, to a constant acceleration A. The solutions that are obtained satisfy both the associate partial differential equations and all imposed initial and boundary conditions. They reduce to those for a Maxwell, Second grade or Navier–Stokes fluid as a limiting case.
@article{BASM_2006_1_a8,
     author = {Corina Fetec\u{a}u and Constantin Fetec\u{a}u},
     title = {Unsteady flow of an {Oldroyd-B} fluid induced by a constantly accelerating plate},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {85--91},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a8/}
}
TY  - JOUR
AU  - Corina Fetecău
AU  - Constantin Fetecău
TI  - Unsteady flow of an Oldroyd-B fluid induced by a constantly accelerating plate
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 85
EP  - 91
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a8/
LA  - en
ID  - BASM_2006_1_a8
ER  - 
%0 Journal Article
%A Corina Fetecău
%A Constantin Fetecău
%T Unsteady flow of an Oldroyd-B fluid induced by a constantly accelerating plate
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 85-91
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a8/
%G en
%F BASM_2006_1_a8
Corina Fetecău; Constantin Fetecău. Unsteady flow of an Oldroyd-B fluid induced by a constantly accelerating plate. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 85-91. https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a8/

[1] Fetcău C., Buzescu F. L., Fetecău C., “Some new exact solutions for the lineal flow of a non-Newtonian fluid”, Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2005, no. 1(47), 35–42 | MR

[2] Rajagopal K. R., “Mechanics of non-Newtonian fluids. Recent developments in theoretical fluids mechanics”, Pitman Research Notes in Mathematics, 291, 1993, 129–162 | MR | Zbl

[3] Bandelli R., Rajagopal K. R., “Start-up flows of second grade fluids in domains with one finite dimension”, Int. J. Non-Linear Mech., 30:6 (1995), 817–839 | DOI | MR | Zbl

[4] Bandelli R., Rajagopal K. R., Galdi G. P., “On some unsteady motions of fluids of second grade”, Arch. Mech., 47:4 (1995), 661–676 | MR | Zbl

[5] Fetecău C., Fetecău C., “The first problem of Stokes for ana Oldroyd-B fluid”, Int. J. Non-Linear Mech., 38:10 (2003), 1539–1544 | DOI | Zbl

[6] Sneddon I. N., Fourier transforms, McGraw-Hill Book Company, New York–Toronto–London, 1951 | MR