On determining the minimum cost flows in dynamic networks
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 51-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamic minimum cost flow problem that generalizes the static one is studied. We assume that the supply and demand function and capacities of edges depend on time. One very important case of the minimum cost flow problem with nonlinear cost functions, defined on edges, that do not depend on flow but depend on time is studied.
@article{BASM_2006_1_a5,
     author = {Maria Fonoberova},
     title = {On determining the minimum cost flows in dynamic networks},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--56},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a5/}
}
TY  - JOUR
AU  - Maria Fonoberova
TI  - On determining the minimum cost flows in dynamic networks
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 51
EP  - 56
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a5/
LA  - en
ID  - BASM_2006_1_a5
ER  - 
%0 Journal Article
%A Maria Fonoberova
%T On determining the minimum cost flows in dynamic networks
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 51-56
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a5/
%G en
%F BASM_2006_1_a5
Maria Fonoberova. On determining the minimum cost flows in dynamic networks. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 51-56. https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a5/

[1] Christofides N., Graph theory. An algorithmic approach, Academic Press, New York–London–San Francisco, 1975 | MR | Zbl

[2] Fonoberova M., Lozovanu D., “The optimal flow in dynamic networks with nonlinear cost functions on edges”, Bul. Acad. of Sc. of Moldova, Mathematics, 2004, no. 3(46), 10–16 | MR | Zbl

[3] Ford L., Fulkerson D., Flows in Networks, Princeton University Press, Princeton, NJ, 1962 | MR | Zbl

[4] Kou L., Markowsky G., Berman L., “A Fast Algorithm for Steiner Trees”, Acta Informatica, 15, Springer-Verlag, 1981, 141–145 | MR | Zbl

[5] Lozovanu D., Stratila D., “The minimum-cost flow problem on dynamic networks and algorithm for its solving”, Bul. Acad. of Sc. of Moldova, Mathematics, 2001, no. 3(37), 38–56 | MR | Zbl

[6] Lozovanu D., Extremal-Combinatorial Problems and Algorithms for their Solving, Stiintsa, Chisinau, 1991

[7] Plesnik J., “A bound for the Steiner tree problem in graphs”, Mathematica Slovaca, 31(2) (1981), 155–163 | MR | Zbl