Junior spatial groups of (221)-symmetry
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 105-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The connection between junior groups of three independent kinds of antisymmetry transformations and junior groups of (221)-symmetry, derived from space Fedorov groups was established. This connection allowed us to find all these groups.
@article{BASM_2006_1_a11,
     author = {A. A. Shenesheutskaia},
     title = {Junior spatial groups of $(22\underline{1})$-symmetry},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {105--108},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a11/}
}
TY  - JOUR
AU  - A. A. Shenesheutskaia
TI  - Junior spatial groups of $(22\underline{1})$-symmetry
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 105
EP  - 108
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a11/
LA  - en
ID  - BASM_2006_1_a11
ER  - 
%0 Journal Article
%A A. A. Shenesheutskaia
%T Junior spatial groups of $(22\underline{1})$-symmetry
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 105-108
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a11/
%G en
%F BASM_2006_1_a11
A. A. Shenesheutskaia. Junior spatial groups of $(22\underline{1})$-symmetry. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 105-108. https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a11/

[1] Shenesheutskaia A., Palistrant A., “On space groups of crystallographic $P$-symmetries in the geometrical classification”, Analele stiintifice ale USM. Seria “Stiinte fizico-matematice”, USM, Chişinău, 2002, 207–210 (in Russian)

[2] Palistrant A. F., Shenesheutskaia A. A., “Spatial groups of crystallographic $P$-symmetries in geometric classification”, Second Conference of the Mathematical Society of the Republic of Moldova, Communications, Chişinău, 2004, 241–244

[3] Zamorzaev A. M., Palistrant A. F., “Geometrical classification of $P$-symmetries”, DAN USSR, 256:4 (1981), 865–859 (in Russian) | MR

[4] Zamorzaev A. M., Theory of simple and multiple antisymmetry, Shtiintsa, Kishinev, 1976 | MR

[5] Jablan S. V., “Generalized space Shubnikov groups”, Publications de l'institut mathematique. Nouvelle serie, 40(54) (1986), 33–48 (in Russian) | MR