Properties of one-sided ideals of topological rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuous ring isomorphism ν:(R,τ)(R^,τ^) is said to be semitopological from the left (right) in the class R provided (R,τ) is a left ideal (right ideal, ideal) of a topological ring (R~,τ~)R and ν=ν~|R for a topological homomorphism ν~:(R~,τ~)(R^,τ^). The article contains several criteria for a continuous homomorphism to be semi-topological from the left (right).
@article{BASM_2006_1_a0,
     author = {V. I. Arnautov},
     title = {Properties of one-sided ideals of topological rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--14},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a0/}
}
TY  - JOUR
AU  - V. I. Arnautov
TI  - Properties of one-sided ideals of topological rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 3
EP  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a0/
LA  - en
ID  - BASM_2006_1_a0
ER  - 
%0 Journal Article
%A V. I. Arnautov
%T Properties of one-sided ideals of topological rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 3-14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a0/
%G en
%F BASM_2006_1_a0
V. I. Arnautov. Properties of one-sided ideals of topological rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 3-14. https://geodesic-test.mathdoc.fr/item/BASM_2006_1_a0/

[1] Arnautov V. I., “A semitopological isomorphism of topological rings”, Mat. issledovaniya, no. 4:2(12), Stiintsa, Kishinev, 1969, 3–16 (in Russian) | MR

[2] Arnautov V. I., “Semitopological isomorphism of topological groups”, Buletinul Academiei de Sţiinţe a Republicii Moldova, Matematica, 2004, no. 1(44), 15–25 | MR | Zbl

[3] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, New York–Basel–Hong Kong, 1996 | MR | Zbl