Multiobjective Games and Determining Pareto-Nash Equilibria
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 115-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multiobjective noncooperative games with vector payoff functions of players. Pareto-Nash equilibria conditions for such class of games are formulated and algorithms for determining Pareto-Nash equilibria are proposed.
@article{BASM_2005_3_a9,
     author = {D. Lozovanu and D. Solomon and A. Zelikovsky},
     title = {Multiobjective {Games} and {Determining} {Pareto-Nash} {Equilibria}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {115--122},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a9/}
}
TY  - JOUR
AU  - D. Lozovanu
AU  - D. Solomon
AU  - A. Zelikovsky
TI  - Multiobjective Games and Determining Pareto-Nash Equilibria
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 115
EP  - 122
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a9/
LA  - en
ID  - BASM_2005_3_a9
ER  - 
%0 Journal Article
%A D. Lozovanu
%A D. Solomon
%A A. Zelikovsky
%T Multiobjective Games and Determining Pareto-Nash Equilibria
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 115-122
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a9/
%G en
%F BASM_2005_3_a9
D. Lozovanu; D. Solomon; A. Zelikovsky. Multiobjective Games and Determining Pareto-Nash Equilibria. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 115-122. https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a9/

[1] Neumann J., Morgenstern O., Theory of games and economic behaviour, Princeton Univ. Press, Princeton, 1953 | Zbl

[2] Nash J., “Non-cooperative games”, Ann. Math., 54 (1951), 286–295 | DOI | MR | Zbl

[3] Moulin H., Theorie des Jeux pour l'economie et la politique, Paris, 1981

[4] Pareto V., Manuel d'economie politique, Giard, Paris, 1904

[5] Podinovsky V., Noghin V., Pareto optimal solution for multicriterion problem, Nauka, Moscow, 1982

[6] Emelichev V., Perepelitsa V., “The complexity of discrete multicriterion problems”, Discrete mathematics and applications, 6:1 (1994), 3–33

[7] Brucher P., “Discrete parameter optimization problem and essential efficient points”, Operat. Res., 1972, no. 16(5), 189–197

[8] Burkard R., Krarup J., Pruzan P., “Efficiency and optimality in minisum, minimax 0–1 programming problems”, J. Oper. Res. Soc., 1982, no. 33(2), 137–151 | DOI | MR | Zbl

[9] Burkard R., Krarup J., Pruzan P., “A relationship between optimality and efficiency in multicriteria 0–1 programming problems”, Comp. Oper. Res., 1981, no. 8(2), 241–247 | DOI