A~loop transversal in a~sharply 2-transitive permutation loop
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 101-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known theorem of M. Hall about the description of a finite sharply 2-transitive permutation group is generalized for the case of permutation loops. It is shown that the identity permutation with the set of all fixed-point-free permutations in a finite sharply 2-transitive permutation loop forms a loop transversal by its proper subloop – a stabilizator of one symbol.
@article{BASM_2005_3_a8,
     author = {Eugene Kuznetsov},
     title = {A~loop transversal in a~sharply 2-transitive permutation loop},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {101--114},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a8/}
}
TY  - JOUR
AU  - Eugene Kuznetsov
TI  - A~loop transversal in a~sharply 2-transitive permutation loop
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 101
EP  - 114
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a8/
LA  - en
ID  - BASM_2005_3_a8
ER  - 
%0 Journal Article
%A Eugene Kuznetsov
%T A~loop transversal in a~sharply 2-transitive permutation loop
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 101-114
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a8/
%G en
%F BASM_2005_3_a8
Eugene Kuznetsov. A~loop transversal in a~sharply 2-transitive permutation loop. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 101-114. https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a8/

[1] Baer R., “Nets and groups, 1”, Trans. Amer. Math. Soc., 46 (1939), 110–141 | DOI | MR | Zbl

[2] Belousov V. D., Foundations of quasigroup and loop theory, Nauka, Moscow, 1967 (in Russian) | MR

[3] Foguel T., Kappe L. C., “On loops covered by subloops”, Expositiones Mathematicae, 23 (2005), 255–270 | DOI | MR | Zbl

[4] Hall M., Group theory, IL, Moscow, 1962 (in Russian)

[5] Kuznetsov E. A., “Transversals in groups. 1: Elementary properties”, Quasigroups and related systems, 1:1 (1994), 22–42 | MR | Zbl

[6] Kuznetsov E. A., “Sharply $k$-transitive sets of permutations and loop transversals in $S_n$”, Quasigroups and related systems, 1:1 (1994), 43–50 | MR | Zbl

[7] Kuznetsov E. A., “About some algebraic systems related with projective planes”, Quasigroups and related systems, 2 (1995), 6–33 | MR | Zbl

[8] Kuznetsov E. A., “Sharply 2-transitive permutation groups, 1”, Quasigroups and related systems, 2 (1995), 83–100 | MR | Zbl

[9] Kuznetsov E. A., “Loop transversals in $S_n$ by $St_{a, b}(S_n)$ and coordinatizations of projective planes”, Bulletin of AS of RM, Mathematics, 2001, no. 2(36), 125–135 | MR | Zbl

[10] Kuznetsov E. A., “Transversals in loops”, Abstracts of International Conference “Loops'03” (Prague, August 10–17, 2003), 18–20

[11] Kuznetsov E. A., “Transversals in groups. II. Loop transversals in a group by the same subgroup”, Quasigroups Related Systems, 6 (1999), 1–11 | MR | Zbl

[12] Kuznetsov E. A., “Permutation loops” (to appear)

[13] Pflugfelder H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Math., 7, Heldermann Verlag, New York, 1972 | MR

[14] Bonetti F., Lunardon G., Strambach K., “Cappi di permutazionni”, Rend. Math., 12:3–4 (1979), 383–395 | MR | Zbl