On identities of Bol-Moufang type
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 88-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

(Left) Bol loops are usually introduced as loops in which (left) Bol condition is satisfied, and the existence of the two-sided inverse of any element as well as the left inverse property are deduced. It appears that some of the assumptions on the structure are superflous and can be omitted, or modified. Also, Bol loops can be presented in various settings as far as the family of operation symbols is concerned. First we give a short survey on main known results on identities of Bol-Moufang type in quasigroups, written in a unified notation, and try to employ only multiplication and left division for the equational theory of left Bol loops. Then we propose a rather non-traditional concept of the variety of left Bol loops in type (2,1,0), with operation symbols (,1,e) and with five-element defining set of identities, namely xe=ex=x, (x1)1=x, x1(xy)=y, x(y(xz))=(x(yx))z.
@article{BASM_2005_3_a7,
     author = {A. Pavl\r{u} and A. Van\v{z}urov\'a},
     title = {On identities of {Bol-Moufang} type},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {88--100},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a7/}
}
TY  - JOUR
AU  - A. Pavlů
AU  - A. Vanžurová
TI  - On identities of Bol-Moufang type
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 88
EP  - 100
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a7/
LA  - en
ID  - BASM_2005_3_a7
ER  - 
%0 Journal Article
%A A. Pavlů
%A A. Vanžurová
%T On identities of Bol-Moufang type
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 88-100
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a7/
%G en
%F BASM_2005_3_a7
A. Pavlů; A. Vanžurová. On identities of Bol-Moufang type. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 88-100. https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a7/

[1] Bates G., Kiokemeister F., “A note on homomorphic mappings of quasigroups into multiplicative systems”, Bull. Amer. Math. Soc., 54 (1948), 1180–1185 | DOI | MR | Zbl

[2] Belousov V. D., Foundations of the theory of guasigroups and loops, Nauka, Moscow, 1967 | MR

[3] Bol G., “Gewebe und Gruppen”, Math. Ann., 114 (1937), 411–431 | DOI | MR

[4] Bruck R. H., A Survey of Binary Systems, Springer, Berlin, 1958 | MR | Zbl

[5] Chein O., Pflugfelder H. O., Smith J. D. H., Quasigroups and Loops: Theory and Applications, Heldermann Verlag, Berlin, 1990 | MR

[6] Evans T., “Homomorphisms of non-associative systems”, J. London Math. Soc., 24 (1949), 254–260 | DOI | MR

[7] Evans T., “Varieties of loops and quasigroups”, Quasigroups and Loops: Theory and Applications, eds. Chein O., Pflugfelder H. O., Smith J. D. H., Heldermann Verlag, Berlin, 1990, 1–160 | MR

[8] Fenyves F., “Extra loops, I”, Publ. Math., 15 (1968), 235–238 | MR | Zbl

[9] Fenyves F., “Extra loops, II”, Publ. Math., 16 (1969), 187–192 | MR

[10] Kiechle H., Theory of $K$-Loops, Springer, Berlin–Heidelberg–New York, 2002 | MR

[11] Kinyon M. K., “Global left loop structures on spheres”, Comment. Math. Univ. Carolinae, 41:2 (2000), 325–346 | MR | Zbl

[12] Kunen K., “Moufang quasigroups”, Jour. of Algebra, 183 (1996), 231–234 | DOI | MR | Zbl

[13] Kunen K., “Quasigroups, loops and associative laws”, Jour. of Algebra, 185 (1996), 194–204 | DOI | MR | Zbl

[14] Kurosh A. G., Lekcii po obshchei algebre, Fizmatgiz, Moskva, 1962 (in Russian) | MR

[15] Mikheev P. O., Sabinin L. V., The Theory of Smooth Bol Loops, Friendship of Nations University, Moscow, 1985 | MR

[16] Pflugfelder H. O., Quasigroups and Loops, Introduction, Heldermann Verlag, Berlin, 1990 | MR

[17] Phillips J. D., Vojtěchovský P., The varieties of loops of Bol-Moufang type, Preprint series M03/03, 2003 | MR

[18] Phillips J. D., Vojtěchovský P., The varieties of quasigroups of Bol-Moufang type: An equational reasoning approach, Preprint series M03/12, 2003

[19] Phillips J. D., Vojtěchovský P., A scoop from groups: New equational foundations for loops, Preprint series M04/05, 2004

[20] Robinson D. A., “Bol loops”, Trans. Amer. Math. Soc., 123 (1966), 341–354 | DOI | MR

[21] Robinson D. A., “Holomorphy theory of extraloops”, Publ. Math. Debrecen, 18 (1972), 59–64 | MR

[22] Robinson D. A., “Bol quasigroups”, Publ. Math. Debrecen, 19 (1972), 151–153 | MR

[23] Sabinin L. V., Smooth Quasigroups and Loops, Kluwer Acad. Publ., Dordrecht–Boston–London, 1999 | MR | Zbl

[24] Smith J. D. H., “Homotopy and semisymmetry of quasigroups”, Algebra Univ., 38, Birkhäuser, Basel, 1997, 175–184 | MR