Some n-ary analogs of the notion of a~normalizer of an n-ary subgroup in a~group
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 63-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article n-ary analogs of the concept of normalizer of a subgroup of a group are constructed. It is proved that in an n-ary group the role of these n-ary analogs play the concepts of a normalizer and seminormalizer of n-ary subgroup in n-ary group. A connection of these analogs with its binary prototypes is established.
@article{BASM_2005_3_a5,
     author = {A. M. Gal'mak},
     title = {Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {63--70},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a5/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 63
EP  - 70
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a5/
LA  - en
ID  - BASM_2005_3_a5
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 63-70
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a5/
%G en
%F BASM_2005_3_a5
A. M. Gal'mak. Some $n$-ary analogs of the notion of a~normalizer of an $n$-ary subgroup in a~group. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 63-70. https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a5/

[1] Post E. L., “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR | Zbl

[2] Belousov V. D., $n$-Ary quasigroups, Shtiinta, Kishinev, 1972 | MR

[3] Rusakov S. A., Algebraic $n$-ary systems, Navuka i Tehnika, Minsk, 1992

[4] Gal'mak A. M., $n$-ary groups, F. Skorina Gomel' State University, Gomel', 2003

[5] Gal'mak A. M., Congruences of poliadic groups, Belarusskaya navuka, Minsk, 1999