Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2005_3_a3, author = {Lauren\c{t}iu Calmu\c{t}chi}, title = {On a~small quasi-compactness}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {33--42}, publisher = {mathdoc}, number = {3}, year = {2005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a3/} }
Laurenţiu Calmuţchi. On a~small quasi-compactness. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 33-42. https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a3/
[1] Calmuţchi L. I., Choban M. M., “Extensions and mappings of topological spaces”, Buletin Ştiinţific. Universitatea din Piteşti, Matematica şi Informatica, 11 (2005), 50
[2] Choban M. M., Calmuţchi L. I., “On universal properties”, Analele Univer. din Oradea, Fascicole Matematica, VII (1999–2000), 67–72
[3] Engelking R., General Topology, PWN, Warzawa, 1997
[4] Engelking R., Mrowka S., “On $E$-compact spaces”, Bulletin Acad. Polon. Sci., Mathematica, 6 (1958), 429–436 | MR | Zbl
[5] Herrlich H., “Compact $T_0$-spaces and $T_0$-compactifications”, Applied Categorial Structures, 1 (1993), 111–132 | DOI | MR | Zbl
[6] Hušec M., “Čech-Stone-like compactifications for general topological spaces”, Coment. Math. Univ. Carolinae, 33:1 (1992), 159–163 | MR | Zbl
[7] Mrowka S., “Compactness and product spaces”, Colloq. Math., 7 (1959–1960), 19–22 | MR | Zbl
[8] Kovar M. M., “Which topological spaces have a weak reflection in compact spaces”, Comment. Math. Univ. Carolinae, 36:3 (1995), 529–536 | MR | Zbl
[9] Osmotescu T. C., “$\omega\alpha$-extensions”, Vestnic Moscow. Univ., Matematica, 1963, no. 6, 45–54