On a~small quasi-compactness
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 33-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of small quasi-compactness is introduced and studied. Let P be a small quasi-compactness. We prove that the classes of equivalence of P-compactifications of a given space X form a lattice with maximal and minimal elements. Some properties of maximal elements are studied.
@article{BASM_2005_3_a3,
     author = {Lauren\c{t}iu Calmu\c{t}chi},
     title = {On a~small quasi-compactness},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {33--42},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a3/}
}
TY  - JOUR
AU  - Laurenţiu Calmuţchi
TI  - On a~small quasi-compactness
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 33
EP  - 42
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a3/
LA  - en
ID  - BASM_2005_3_a3
ER  - 
%0 Journal Article
%A Laurenţiu Calmuţchi
%T On a~small quasi-compactness
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 33-42
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a3/
%G en
%F BASM_2005_3_a3
Laurenţiu Calmuţchi. On a~small quasi-compactness. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 33-42. https://geodesic-test.mathdoc.fr/item/BASM_2005_3_a3/

[1] Calmuţchi L. I., Choban M. M., “Extensions and mappings of topological spaces”, Buletin Ştiinţific. Universitatea din Piteşti, Matematica şi Informatica, 11 (2005), 50

[2] Choban M. M., Calmuţchi L. I., “On universal properties”, Analele Univer. din Oradea, Fascicole Matematica, VII (1999–2000), 67–72

[3] Engelking R., General Topology, PWN, Warzawa, 1997

[4] Engelking R., Mrowka S., “On $E$-compact spaces”, Bulletin Acad. Polon. Sci., Mathematica, 6 (1958), 429–436 | MR | Zbl

[5] Herrlich H., “Compact $T_0$-spaces and $T_0$-compactifications”, Applied Categorial Structures, 1 (1993), 111–132 | DOI | MR | Zbl

[6] Hušec M., “Čech-Stone-like compactifications for general topological spaces”, Coment. Math. Univ. Carolinae, 33:1 (1992), 159–163 | MR | Zbl

[7] Mrowka S., “Compactness and product spaces”, Colloq. Math., 7 (1959–1960), 19–22 | MR | Zbl

[8] Kovar M. M., “Which topological spaces have a weak reflection in compact spaces”, Comment. Math. Univ. Carolinae, 36:3 (1995), 529–536 | MR | Zbl

[9] Osmotescu T. C., “$\omega\alpha$-extensions”, Vestnic Moscow. Univ., Matematica, 1963, no. 6, 45–54