Strong Stability of Linear Symplectic Actions and the Orbit Method
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 99-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the orbit method we give necessary and sufficient conditions for a linear symplectic action of the group rm to be strongly stable. this criterion generalizes the respective one stated for linear hamiltonian systems by cushman and kelly.
@article{BASM_2005_2_a7,
     author = {Z. Rzesz\'otko},
     title = {Strong {Stability} of {Linear} {Symplectic} {Actions} and the {Orbit} {Method}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--103},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a7/}
}
TY  - JOUR
AU  - Z. Rzeszótko
TI  - Strong Stability of Linear Symplectic Actions and the Orbit Method
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 99
EP  - 103
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a7/
LA  - en
ID  - BASM_2005_2_a7
ER  - 
%0 Journal Article
%A Z. Rzeszótko
%T Strong Stability of Linear Symplectic Actions and the Orbit Method
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 99-103
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a7/
%G en
%F BASM_2005_2_a7
Z. Rzeszótko. Strong Stability of Linear Symplectic Actions and the Orbit Method. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 99-103. https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a7/

[1] Krein M. G., “Obobshchenie nekotorykh issledovanii A. M. Lyapunova o lineinykh differentsial'nykh uravneniyakh s periodicheskimi koeffitsientami”, DAN SSSR, 73:3 (1950), 445–448 | MR

[2] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhniki VINITI: Sovremennye problemy matematiki. Fundamental'nye napravleniya, 4, Moskva, 1985, 5–139 | MR

[3] Cushman R., Kelly A., “Strongly stable real infinitesimal symplectic mappings”, J. Diff. Eq., 1979, no. 31(2), 200–223 | DOI | MR | Zbl

[4] Levi M., “On stability of symplectic maps”, J. Diff. Eq., 1983, no. 50(3), 441–443 | DOI | MR | Zbl

[5] Wójtkowski M. P., “A remark on strong stability of linear Hamiltonian systems”, J. Diff. Eq., 1989, no. 81(2), 313–316 | DOI | MR | Zbl

[6] Lerman L. M., Umanskiy Ya. L., Four-dimensional integrable Hamiltonian systems with simple singular points (Topological aspects), Transl. Mathem. Monographs, 176, AMS, Providence, 1998 | MR | Zbl

[7] Glavan V., “Strong stability criteria for linear Hamilton-Pfaff systems”, Proc. Second Intern. workshop “Mathematica system in teaching and research” (Siedlce), Moscow, 2000, 70–72

[8] Glavan V., Rzeszótko Z., “On strong stability of linear Poisson actions”, Buletinul Academiei de Stiinţe f Republicii Moldova, Matematica, 2003, no. 2(42), 5–12 | MR | Zbl

[9] Kirilov A. A., Lektsii po metodu orbit, Naychnaya kniga, Novosibirsk, 2002